Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nè Câu hỏi của Phạm Hoàng Phương - Vật lý lớp 12 | Học trực tuyến
M 4 -4 -2 O
Biểu diễn dao động bằng véc tơ quay, ban đầu véc tơ quay ở M, quay ngược chiều kim đồng hồ.
Như vậy, khi vật đi quãng đường 2cm thì nó đến O, là vị trí cân bằng, vận tốc cực đại.
\(v_{max}=\omega A=20.4=80cm/s\)
Chọn C.
Vì là vân tối bức xạ $\lambda _2$ trùng với vân sáng của bức xạ $\lambda _1$ nên ta có hệ thức: $m.i_1 = n\dfrac{i_2}{2}$ (n là số lẻ, m là số nguyên)
Theo đề bài, ta có:
\(5m = 2n \Rightarrow 5,5 < 5m.i_1 < 35,5\Rightarrow 11 < 5m < 71\Rightarrow 5,5 < n < 35 \Rightarrow n = 14\)
Động năng: \(W_đ=\dfrac{1}{2}m.v^2=\dfrac{1}{2}.9,1.10^{-31}.(5,8.10^5)^2=1,53.10^{-19}(J)\)
Có: \(W_đ=e.U_h\Rightarrow U_h=\dfrac{1,53.10^{-19}}{1,6.10^{-19}}=0,96V\)
Khoảng vân \(i'=\frac{i}{n'}=\frac{\lambda D}{1,33.a}=\frac{0,5.10^{-3}.10^{-3}}{1,33.2}=1,88mm\)
\(W_t=W_0-W_d=W_0-W_0sin^2\left(\omega t\right)=W_0cos^2\left(\omega t\right)\\\)
\(\Rightarrow W_{tmax}\Leftrightarrow cos^2\left(\omega t\right)=1\\ \Rightarrow W_{tmax}=W_0\)
Mỗi ô mạng cơ sở của tinh thể sắt gồm 88 nguyên tử sắt nằm ở 88 đỉnh mà mỗi nguyên tử này là thành phần gồm 88 ô mạng cở sở bao quanh nó nên bình quân mỗi ô mạng cơ sở có một nguyên tử sắt ở đỉnh, đồng thời có một nguyên tử ở tâm. Do đó mỗi ô mạng cơ sở có hai nguyên tử. Một mol sắt có .
NANA nguyên tử hay NA2NA2 ô mạng cở sở. Thể tích mol là μρμρ thì thể tích một ô cơ sở là
μρ:NA2=2μμNAμρ:NA2=2μμNA.
Vậy a=2μρNA−−−−√3=2,87.10−8cma=2μρNA3=2,87.10−8cm.
Khoảng cách ngắn nhất giữa các nguyên tử là khoảng cách giữa nguyên tử ở đỉnh và nguyên tử ở tâm. Khoảng cách đó bằng a3√2=2,485.10−8cma32=2,485.10−8cm.
Mỗi ô mạng cơ sở của tinh thể sắt gồm 8 nguyên tử sắt nằm ở 8 đỉnh mà mỗi nguyên tử này là thành phần gồm 8 ô mạng cở sở bao quanh nó nên bình quân mỗi ô mạng cơ sở có một nguyên tử sắt ở đỉnh, đồng thời có một nguyên tử ở tâm. Do đó mỗi ô mạng cơ sở có hai nguyên tử. Một mol sắt có .
\(N_A\) nguyên tử hay \(\frac{N_A}{2}\) ô mạng cở sở. Thể tích mol là \(\frac{\mu}{\text{ρ}}\) thì thể tích một ô cơ sở là
\(\frac{\mu}{\text{ρ}}:\frac{N_A}{2}=\frac{2\mu}{\mu}N_A\)
Vậy \(a=\sqrt[3]{\frac{2\mu}{\text{ρ}N_A}}=2,87.10^{-8}cm\)
Khoảng cách ngắn nhất giữa các nguyên tử là khoảng cách giữa nguyên tử ở đỉnh và nguyên tử ở tâm. Khoảng cách đó bằng \(\frac{a\sqrt{3}}{2}=2,485.10^{-8}cm\)
tính đc Fmax = 1N => vị trí bị tách khỏi m1 là tại biên. Có delta(t) = T/2 = pi/10
Wđ=Wt⇔x=A2√
Khi đó v=ωA2√
Theo BTĐL →v′=v1,5
Vmax=(ω′.x)2+v′2−−−−−−−−−−−√=20cm/s