Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút =1/2 h
Gọi năng suất người công nhân theo kế hoạch là x(sản phâm/h) ĐK: \(x>0,x\in N\)
Theo kế hoạch thì thời gian mà người đó hoàn thành 60sp là \(\frac{60}{x}\left(h\right)\)
Nhưng trên thực tế người công nhân đó mỗi giờ làm thêm 2 sản phẩm vậy năng suất thự tế là \(x+2\)(sp/h)
Số sản phẩm mà người đó làm được trên thực tế là \(60+3=63\left(sp\right)\)
Do đó thời gian thực tế mà người đó hoàn thành công việc là \(\frac{63}{x+2}\left(h\right)\)
Vì kế hoạch được hoàn thành sớm hơn dự định 1/2 h nên ta có pt sau:
\(\frac{60}{x}-\frac{63}{x+2}=\frac{1}{2}\)
\(\Leftrightarrow\frac{60x+120}{x\left(x+2\right)}-\frac{63x}{x\left(x+2\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{-3x+120}{x^2+2x}=\frac{1}{2}\)
\(\Leftrightarrow x^2+2x=-6x+240\)
\(\Leftrightarrow x^2+8x-240=0\)
\(\Leftrightarrow x^2-12x+20x-240=0\)
\(\Leftrightarrow x\left(x-12\right)+20\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-12\right)\left(x+20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\left(tm\right)\\x=-20\left(loai\right)\end{cases}}\)
Vậy theo kế hoạch mỗi giờ người đó làm được 12 sản phẩm
Gọi số sản phẩm người đó phải hoàn thành theo kế hoạch trong mỗi giờ là a (sản phẩm) (a>0)
Nên số giờ người đó dự định hoàn thành 60 sản phẩm là \(\frac{60}{a}\) (giờ)
Do cải tiến kĩ thuật nên mỗi giờ người đó làm được a+2 (sản phẩm), và còn vượt mức 3 sản phẩm nên thời gian hoàn thành công việc thực tế là \(\frac{60+3}{a+2}\left(giờ\right)\)
Sớm hơn dự định 30 phút = \(\frac{1}{2}\) giờ, nên ta có:
\(\frac{60}{a}-\frac{60+3}{a+2}=\frac{1}{2}\)
\(\Rightarrow\left[60\left(a+2\right)-63a\right]2=a^2+2a\)
\(\Rightarrow a^2+8a-240=0\)
\(\Delta'=4^2+240=256>0\)
\(\Rightarrow a=-4-\sqrt{256}=-20< 0\left(l\right)\)
Hoặc \(a=-4+\sqrt{256}=12\) ( nhận )
Vậy theo kế hoạch mỗi giờ người đó làm 12 sản phẩm.
Gọi số sản phẩm người đó mỗi giờ phải làm theo kế hoạch là \(x\)(sản phẩm), \(x>0\).
Theo kế hoạch người đó hoàn thành công việc sau số giờ là: \(\frac{60}{x}\)(giờ)
Đổi: \(30\)phút \(=\)\(0,5\)giờ.
Thực tế mỗi giờ người đó sản xuất được: \(x+2\)(sản phẩm)
Người đó hoàn thành công việc sau: \(\frac{60}{x}-0,5\)(giờ).
Ta có phương trình:
\(\left(x+2\right)\left(\frac{60}{x}-0,5\right)=63\)
\(\Rightarrow-0,5x^2+59x+120=63x\)
\(\Leftrightarrow x^2+8x-240=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\left(tm\right)\\x=-20\left(l\right)\end{cases}}\)
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ
Gọi số sản phẩm công nhân làm trong 1 h là x( x<45)
Vì thực tế mỗi giờ sản xuất thêm 1 sp nên số sp làm trong 1 h thực tế là: x+1
Vì hoàn thành sớm hơn dự định 18 phút và còn làm thêm được 2 sản phẩm nên ta có pt:
\(\dfrac{45}{x}-\dfrac{47}{x+1}=\dfrac{3}{10}\)
⇔x=9(TM)
Vậy trong 1h người đó làm được 9 sp theo dự định
Đổi 25 phút =5/12 giờ
Gọi số sản phẩm mỗi giờ người đó làm được theo kế hoạch là x (x>0, \(x\in N\))
Thời gian dự định làm xong việc là: \(\dfrac{100}{x}\) giờ
Thực tế mỗi giờ người đó làm được: \(x+4\) sản phẩm
Số sản phẩm thực tế người đó làm được: \(100+10=110\) sản phẩm
Thời gian thực tế người đó làm: \(\dfrac{110}{x+4}\) giờ
Do người đó hoàn thành trước thời hạn 5/12 giờ nên ta có pt:
\(\dfrac{100}{x}-\dfrac{110}{x+4}=\dfrac{5}{12}\)
\(\Rightarrow240\left(x+4\right)-264x=x\left(x+4\right)\)
\(\Leftrightarrow x^2+28x-960=0\Rightarrow\left[{}\begin{matrix}x=20\\x=-48\left(loại\right)\end{matrix}\right.\)
Gọi năng suất dự định là x (0 < x < 20, sản phẩm/giờ)
Sản phẩm làm được sau 2 giờ là: 2x (sản phẩm)
Số sản phẩm còn lại là 120 – 2x (sản phẩm)
Năng suất sau khi cải tiến là x + 3 (sản phẩm/giờ)
Thời gian làm số sản phẩm còn lại là: 120 - 2 x x + 3 (giờ)
Do sau khi cải tiến người đó hoàn thành kế hoạch sớm hơn dự định 1 giờ 36 phút
Đổi 1 giờ 36 phút bằng 1,6 giờ
Theo bài ra ta có phương trình:
Vậy năng suất dự định của công nhân đó là 12 sản phẩm/giờ
Đáp án C
Gọi x là số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo kế hoạch
(x ∈ ℕ * , x < 84)
Số sản phẩm mỗi giờ mà người công nhân phải hoàn thành theo thực tế: x + 2
Thời gian mà công nhân hoàn thành theo kế hoạch: 84/x (h)
Thời gian mà công nhân hoàn thành theo thực tế: 84/(x+2) (h)
Người công nhân đó hoàn thành công việc sớm hơn dự định 1 giờ nên ta có phương trình:
Vậy theo kế hoạch mỗi giờ người công nhân phải làm 12 sản phẩm
Đáp án: B
Cho \(x\) là năng suất dự định làm của người đó \(\left(x\in N\text{*}\right)\).
Thời gian dự định làm của người đó là \(\dfrac{60}{x}\).
Do mỗi giờ làm thêm 4 sản phẩm nên năng suất thực tế là \(x+4\).
Thời gian thực tế người đó làm 60 sản phẩm và thêm 12 sản phẩm : \(\dfrac{60+12}{x+4}=\dfrac{72}{x+4}\).
Do làm sớm trước kế hoạch \(30\left(phút\right)=\dfrac{1}{2}\left(h\right)\) nên : \(\dfrac{60}{x}-\dfrac{72}{x+4}=\dfrac{1}{2}\)
\(\Rightarrow120\left(x+4\right)-144x=x\left(x+4\right)\)
\(\Leftrightarrow x^2+28x-480=0\left(I\right)\).
Phương trình \(\left(I\right)\) có : \(\Delta'=b'^2-ac=14^2-1.\left(-480\right)=676>0\)
Suy ra, phương trình \(\left(I\right)\) có hai nghiệm phân biệt :
\(\left[{}\begin{matrix}x_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-14+\sqrt{676}}{1}=12\left(tm\right)\\x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-14-\sqrt{676}}{1}=-40\left(ktm\right)\end{matrix}\right.\).
Vậy : Năng suất thực tế làm của người đó là \(x+4=12+4=16\) (sản phẩm/giờ).
Gọi năng suất là x
=>Thời gian dự định là 60/x
Năng suất thực tế là x+4
Theo đề, ta có:
60/x-72/x+4=1/2
=>x=12