Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là x ( đk x>7)
Theo đề toán ta có: \(\dfrac{x}{24}+\dfrac{x+7}{30}=\dfrac{1}{3}\)
giải nốt :D
Đổi \(20'=\dfrac{1}{3}h\)
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là:
\(\dfrac{x}{24}\)(h)
Thời gian người đó đi từ B về A là:
\(\dfrac{x+7}{30}\)(h)
Vì thời gian về ít hơn thời gian đi là 20 phút nên ta có phương trình:
\(\dfrac{x}{24}-\dfrac{x+7}{30}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{10x}{240}-\dfrac{8\left(x+7\right)}{240}=\dfrac{80}{240}\)
\(\Leftrightarrow10x-8x-56=80\)
\(\Leftrightarrow2x=136\)
hay x=68(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 68km
Gọi độ dài quãng đường lúc đi là x (km) với x>0
Độ dài quãng đường lúc về là: \(x+6\) (km)
Thời gian đi của người đó: \(\dfrac{x}{25}\) giờ
Thời gian về của người đó: \(\dfrac{x+6}{30}\) giờ
Do thời gian về ít hơn thời gian đi là \(10\) phút \(=\dfrac{1}{6}\) giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{11}{30}\)
\(\Leftrightarrow x=55\left(km\right)\)
S (km) | v (km/giờ) | t (giờ) | |
A→B | x | 25km/giờ | \(\dfrac{x}{25}\) |
Quãng đường khác | x+6 | 30km/giờ | \(\dfrac{x+6}{30}\) |
Theo đầu bài ta có phương trình:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow x=55\left(km\right)\)
Vậy quãng đường lúc đi là 55km
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{30}{x}-\dfrac{36}{x+21}=\dfrac{15}{60}=\dfrac{1}{4}\Rightarrow x\approx32,5km\)
Gọi độ dài AB là x
Thời gian đi là x/35
Thời gian về là (x+5)/40
Theo đề, ta có: x/35-(x+5)/40=1/2
=>x/35-x/40-1/8=1/2
=>x/280=1/2+1/8=5/8
=>x=175
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{9}-\dfrac{x+6}{12}=\dfrac{1}{3}\Rightarrow x=30\left(tmđk\right)\)
30 phút=\(\dfrac{1}{2}\)giờ
Gọi thời gian lúc đi là x(giờ; x>0)
Vì thời gian lúc đi ít hơn thời gian lúc về là 30 phút(\(\dfrac{1}{2}\)giờ)
=>Thời gian lúc về là:x+\(\dfrac{1}{2}\)(giờ)
Vận tốc của người đó lúc về nhỏ hơn vận tốc lúc đi là 6km/h
=>Vận tốc của người đó lúc về là:30-6=24(km/h)
Quãng đường lúc đi: 30x(km)
Quãng đường lúc về là: 24(x+\(\dfrac{1}{2}\))
Quãng đường đi được là không đổi nên ta có phương trình:
30x=24(x+\(\dfrac{1}{2}\))
\(\Leftrightarrow\)30x=24x+12
\(\Leftrightarrow\)30x-24x=12
\(\Leftrightarrow\)6x=12
\(\Leftrightarrow\)x=2(TMĐK)
Vậy quãng đường AB dài: 30.2=60km
Đổi 20 phút=1/3h
Gọi x là độ dài quãng đường AB ( km,x>0)
Thời gian người đó đi từ A -> B là: \(\dfrac{x}{9}\)(h)
Thời gian người đó đi từ B về A với con đường khác là: \(\dfrac{x+6}{12}\)(h)
Vì thời gian trở về ít hơn thời gian đi 1/3h nên ta có phương trình:
\(\dfrac{x}{9}-\dfrac{x+6}{12}=\dfrac{1}{3}\)
<=>\(\dfrac{4x}{36}-\dfrac{3(x+6)}{36}=\dfrac{12}{36}\)
<=> 4x-3x-18=12
<=> x=30(nhận)
Vậy quãng đường AB dài 30km
gọi x là quãng đường AB ( đk x > 0 )
quãng đường dài hơn đường cũ là x+6 ( km )
thời gian đi quãng đường AB : \(\frac{x}{30}\) ( h )
thời gian đi quãng đường dài hơn AB : \(\frac{x+6}{36}\) ( h)
do thời gian về ít hơn thời gian đi là 10 phút .=
Ta có phương trình :
\(\frac{x}{30}-\frac{x+6}{36}=\frac{1}{6}\)
\(\Leftrightarrow\frac{6x}{180}-\frac{5.\left(x+6\right)}{180}=\frac{30}{180}\)
\(\Leftrightarrow6x-5.\left(x+6\right)=30\)
\(\Leftrightarrow6x-\left(5x+30\right)=30\)
\(\Leftrightarrow6x-5x-30=30\)
\(\Leftrightarrow x-30=30\)
\(\Leftrightarrow x=60\)
Vậy quãng đường AB là 60 ( km )
quãng đường dài hơn quãng đường AB là 60 + 6 =66 ( km)