Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc trung bình trên cả quãng đường :
vtb = \(\frac{s}{\frac{s}{2\cdot v_1}+\frac{s}{2\cdot v_2}}\) = \(\frac{2\cdot v_1\cdot v_2}{v_1+v_2}\)
mà vtb = 8 km/h, v1 = 12 km/h.
Suy ra v2 = 6 km/h.
Ta có :
\(V_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{V_1}+\dfrac{S}{V_2}}=\dfrac{2}{\dfrac{1}{V_1}+\dfrac{1}{V_2}}\left(1\right)\)
Thay \(V_1=12\)km/h
\(V_{tb}=8\)km/h
\(\Rightarrow\) Thay vào \(\left(1\right)\) ta được:
\(8=\dfrac{2}{\dfrac{1}{12}+\dfrac{1}{V_2}}\)
\(\Leftrightarrow\dfrac{1}{12}+\dfrac{1}{V_2}=\dfrac{2}{8}\)
\(\Leftrightarrow\dfrac{1}{V_2}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
\(\Leftrightarrow V_2=6\)km/h
Vậy \(V_2=6\)(km/h)
Ta có: \(v_{tb}=\dfrac{s_1+s_2}{t_1+t_2}\)
\(\Leftrightarrow9=\dfrac{\dfrac{2}{3}s+\dfrac{1}{3}s}{\dfrac{\dfrac{2}{3}s}{12}+\dfrac{\dfrac{1}{3}s}{v_2}}=\dfrac{s}{\dfrac{s}{18}+\dfrac{s}{3v_2}}=\dfrac{s}{\dfrac{s\left(18+3v_2\right)}{54v_2}}=\dfrac{54v_2}{18+3v_2}\)
\(\Leftrightarrow v_2=6\left(\dfrac{m}{s}\right)\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{2}:12+\dfrac{S}{2}:18}=\dfrac{S}{\dfrac{S}{48}+\dfrac{S}{36}}=\dfrac{S}{\dfrac{7S}{144}}\approx20,57\)(km/h)
Thời gian đi quãng đường đầu và quãng đường sau là:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2v_1}=\dfrac{S}{24}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}=\dfrac{S}{40}\left(h\right)\end{matrix}\right.\)
Vận tốc trung bình là: \(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=\dfrac{S}{S\left(\dfrac{1}{24}+\dfrac{1}{40}\right)}=15\left(\dfrac{km}{h}\right)\)
Gọi \(s,s_1,s_2\) lần lượt là tổng quãng đường, nửa quãng đường đầu và nửa quãng đường sau
Ta có:
\(s_1=s_2=\frac{s}{2}\)
Thời gian \(t_1\) để xe đi hết nửa quãng đường đầu là:
\(t_1=\frac{s_1}{v_1}=\frac{s}{2.12}=\frac{s}{24}\)(km/h)
Thời gian \(t_2\) để xe đi hết nửa quãng đương còn lại là:
\(t_2=\frac{s_2}{v_2}=\frac{s}{2.6}=\frac{s}{12}\) (km/h)
Vận tốc trung bình đi trên quãng đường là:
\(v_{tb}=\frac{s}{t_1+t_2}=\frac{s}{\frac{s}{24}+\frac{s}{12}}=8\left(\frac{km}{h}\right)\)
Gọi s là độ dài của cả quãng đường
Ta có s1 = s2 = \(\frac{s}{2}\)
Thời gian đi trên nữa quãng đường đầu là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{2.12}=\frac{s}{24}\)
Thời gian đi trên nữa quãng đường sau là:
t2 = \(\frac{s_2}{v_2}=\frac{s}{2.6}=\frac{s}{12}\)
Vận tốc trung bình trên cả quãng đường là:
vtb = \(\frac{s}{t_1+t_2}=\frac{\frac{s}{2}}{\frac{s}{24}+\frac{s}{12}}=\frac{\frac{s}{2}}{\frac{s}{8}}=4\)(km/h)
Tóm tắt:
\(s_1=\frac{1}{2}\\ v_1=\frac{12km}{h}\\ s_2=\frac{1}{2}\\ v_2=\frac{6km}{h}\\ -------------------\\ v_{tb}=?\)
Giải:
Thời gian đi quãng đường thứ nhất:
\(v=\frac{s}{t}\\ =>t_1=\frac{s_1}{v_1}=\frac{\frac{1}{2}}{12}=\frac{1}{24}\left(h\right)\)
Thời gian đi quãng đường thứ hai:
\(v=\frac{s}{t}\\ =>t_2=\frac{s_2}{v_2}=\frac{\frac{1}{2}}{6}=\frac{1}{12}\left(h\right)\)
Vận tốc trung bình trên cả quãng đường:
\(v_{tb}=\frac{s_1+s_2}{t_1+t_2}=\frac{\frac{1}{2}+\frac{1}{2}}{\frac{1}{24}+\frac{1}{12}}=\frac{1}{\frac{1}{8}}=8\left(\frac{km}{h}\right)\)
Bài này SBT cũng có:Gọi s là quãng đường, s1 là nửa quangc đường đầu, s2......... sau.
t1=s1/v1=(1/2s)/12h
t2=s2/v2=(1/2s)/6h
vtb=\(\frac{s1+s2}{t1+t2}=\frac{\frac{1}{2}s+\frac{1}{2}s}{\frac{\frac{1}{2}s}{12}+\frac{\frac{1}{2}s}{6}=8}\)
=8(km/h)
gọi quãng đường người đó đi là s
t1 là thời gian đi hết 1/3 quãng đường đầu
t2 là thời gian đi hết qđ còn lại
Theo đề ta có:
t1=\(\frac{S}{3.v_{^{ }}1}\)
t2=\(\frac{2S}{3v_2}\)
vtb=\(\frac{S}{t}=\frac{S}{t1+t2}=\frac{S}{\frac{S}{3v1}+\frac{2S}{3v2}}=\frac{S}{S\left(\frac{1}{3v1}+\frac{2}{3v2}\right)}=\frac{1}{\frac{v2+2v1}{3v1v2}}=\frac{3v1v2}{v2+2v1}=\frac{12km}{h}\)
<=>\(\frac{3.14v2}{v2+28}=\frac{42v2}{v2+28}=12\)<=> 42v2=12v2+366 =>v2=12.2 km/h