Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Gọi vận tốc dự định đi hết quãng đường là x(km/h) và thời gian dự định là y (giờ0 với x;y>0
Độ dài quãng đường AB: \(xy\) (km)
Do người đó tăng vận tốc thêm 25km/h thì đến sớm hơn 1 giờ nên:
\(\left(x+25\right)\left(y-1\right)=xy\)
Do người đó giảm vận tốc 20km/h thì đến muộn hơn 2 giờ nên:
\(\left(x-20\right)\left(y+2\right)=xy\)
Ta có hệ: \(\left\{{}\begin{matrix}\left(x+25\right)\left(y-1\right)=xy\\\left(x-20\right)\left(y+2\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+25y=25\\2x-20y=40\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=50\\y=3\end{matrix}\right.\)
Quãng đường: \(50.3=150\left(km\right)\)
đáp án là 10km/h
Gợi ý: ta có pt là
20/a + 1/4 = 1 + (20-a)/(a-2)
Trong đó:
a là vận tốc dự định
20/a là thời gian dự định
1/4 là 15p
(20-a)/(a-2) là thời gian đi trong quãng đường còn lại
Khai triển pt ta sẽ có:
4(a^2-40) = 3(a^2-2a)
<=>4a^2-160 = 3a^2 - 6a
<=>a^2 + 6a = 160
<=>a^2 + 6a - 160= 0
<=>a^2 + 16a - 10a - 160= 0
<=>a(a +16) - 10(a +16) = 0
<=>(a +16)(a -10) = 0
+Hoặc a +16 =0 <=> a= -16(loại vì vận tốc luôn luôn dương)
+Hoặc a -10 =0 <=> a= 10 (nhận)
Vậy vận tốc dự định của người đi xe đạp là 10km/h
Bắt Hết!!!
Lệch vận tốc là 20km/h
Lệch thời gian là 3 giờ
=> Quãng đường là: S=60km
vt=60
(v-10)(t+1)=60
(v+10)(t-1)=60
Giải ra dduocj v, t
Gọi x (km/h) là vận tốc dự định của người đó (x>5)
Vận tốc người đó giảm vận tốc 5km/h là x−5 (km/h)
Thời gian dự đinh đi là: \(\dfrac{60}{x}\)(giờ)
Thời gian thực tế người đó đi nửa quãng đường đầu là: \(\dfrac{30}{x}\)(giờ)
Thời gian thức tế người đó đi nửa quãng đường còn lại là: \(\dfrac{30}{x-5}\)(giờ)
Theo đề ra ta có thời gian thực tế chậm hơn thời gian dự định là 1 giờ nên ta có:
\(\dfrac{60}{x}\)=\(\dfrac{30}{x}\)+ \(\dfrac{30}{x-5}\) - 1
⇒ 60(x-5) = 30(x-5) + 30x - x(x-5)
⇔ 60x - 300 = 30x - 150 + 30x - x2+5x
⇔ x2 - 5x - 150 = 0
⇔ \(\left[{}\begin{matrix}x=15\left(tm\right)\\x=-10\left(loại\right)\end{matrix}\right.\)
Vậy.....
Gọi vận tốc dự định của ô tô là x (km/h, x>10)
thời gian dự định ô tô đi là y (giờ, y>1 )
Quãng đường AB dài là: \(xy\left(km\right)\)
Nếu vận tốc tăng 20 km/giờ thì ô tô đến B sớm hơn dự định 1 giờ.
\(\Rightarrow\left(x+20\right).\left(y-1\right)=xy\)
\(\Leftrightarrow xy-x+20y-20=xy\)
\(\Leftrightarrow-x+20y=20\)(1)
Nếu vận tốc giảm bớt đi 10 km/giờ thì ô đến B chậm so với dự định 1 giờ
\(\Rightarrow\left(x-10\right).\left(y+1\right)=xy\)
\(\Leftrightarrow xy+x-10y-10=xy\)
\(\Leftrightarrow x-10y=10\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}-x+20y=20\\x-10y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10y=30\\x-10y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\left(TM\right)\\x=40\left(TM\right)\end{cases}}\)
Vậy độ dài quãng đường AB là: \(40.3=120\left(km\right)\)
Đổi \(30p=\frac{1}{2}h\)
Gọi vận tốc dự định của người đó là x (km/h) (x > 0)
\(\Rightarrow\) thời gian dự định của người đó là : \(t_{dđ}=\frac{S_{AB}}{v_{dđ}}=\frac{50}{x}\) (h)
Quãng đường ng đó di chuyển được sau 2 giờ là : \(2x\) (km)
\(\Rightarrow\)Quãng đường còn lại là \(50-2x\) (km)
Người đó phải tăng vận tốc thêm 2km/h trên quãng đường còn lại để đến B đúng dự định nên ta có PT :
\(\frac{50}{x}=2+\frac{1}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5x+10+100-4x}{2\left(x+2\right)}\Leftrightarrow\frac{50}{x}=\frac{x+110}{2x+4}\)
\(\Leftrightarrow x^2+110x-100x-200=0\)
\(\Leftrightarrow x^2+10x-200=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+20\right)\Rightarrow\orbr{\begin{cases}x=10\\x=-20\left(l\right)\end{cases}}\)
Vậy vận tốc ban đầu của xe là 10 km/h
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
Gọi vận tốc dự định là x(km/h)
(Điều kiện: x>0)
Thời gian dự kiến ban đầu là \(\dfrac{150}{x}\left(giờ\right)\)
Vận tốc thực tế là x-5(km/h)
Thời gian thực tế đi hết quãng đường là \(\dfrac{150}{x-5}\left(giờ\right)\)
Vì đến B chậm hơn 2 giờ nên ta có phương trình:
\(\dfrac{150}{x-5}-\dfrac{150}{x}=2\)
=>\(\dfrac{150x-150\left(x-5\right)}{x\left(x-5\right)}=2\)
=>\(150x-150x+750=2x\left(x-5\right)\)
=>2x(x-5)=750
=>x(x-5)=150
=>\(x^2-5x-150=0\)
=>\(\left(x-15\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}x-15=0\\x+10=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=15\left(nhận\right)\\x=-10\left(loại\right)\end{matrix}\right.\)
vậy: Vận tốc dự kiến là 15km/h