Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 45 phút =3/4 giờ
Gọi x (km) là chiều dài quãng đường AB (x > 0)
Thời gian đi là: x/12 giờ
Thời gian về là: x/10 giờ
Vì thời gian về nhiều hơn thời gian đi là 3/4 giờ nên ta có phương trình sau:
\(\frac{x}{10}-\frac{x}{12}=\frac{3}{4}\)
Giải phương trình ta được: x = 45 ( TMĐK)
Vậy quãng đường AB có chiều dài là: 45 km
k cho mk nha
Gọi thời gian đi là x (h) ( x>o)
Thời gian về là x+3/4(h)
Quãng đường đi 15x (km)
Quãng đường về 12(x+3/4)(km)
Vì quãng đường AB lúc đi và về không đổi ---> phương trình
15x=12(x+3/4)
---> x=3(tmđk)
--->quãng đường AB dài :15.3=45
Vậy......
Gọi độ dài quãng đường AB là x km (x>0)
Thời gian đi từ A đến B là: \(\dfrac{x}{12}\) giờ
Thời gian từ B về A là: \(\dfrac{x}{10}\) giờ
Do thời gian về nhiều hơn thời gian đi là 45 phút =3/4 giờ nên ta có pt:
\(\dfrac{x}{10}-\dfrac{x}{12}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x}{60}=\dfrac{3}{4}\)
\(\Leftrightarrow x=45\) (km)
Gọi độ dài AB là x
Thời gian đi là x/12
Thời gian về là x/10
Theo đề, ta có:
x/10-x/12=3/4
=>x/60=3/4
=>x=45
\(45ph=\dfrac{3}{4}\left(h\right)\)
Gọi thời gian đi là x>0 (giờ) \(\Rightarrow\) thời gian về là \(x+\dfrac{3}{4}\) (giờ)
Quãng đường lúc đi: \(15x\) (km)
Quãng đường lúc về: \(12\left(x+\dfrac{3}{4}\right)\) (km)
Do quãng đường AB là ko đổi nên ta có pt:
\(15x=12\left(x+\dfrac{3}{4}\right)\Leftrightarrow3x=9\Rightarrow x=3\) (giờ)
Độ dài quãng đường AB: \(S=15.3=45\left(km\right)\)
vì vận tốc tỉ lệ nghịch với thời gian nên tỉ số giữa 2 thời gian là
t1/t2=v2/v1=12/15=4/5
người đó đi mất số thời gian là:
15:(5-4)x4=60(phút)=1 giờ
Quãng đường AB dài là:
15x1=15(km)
DS:15km
Gọi thời gian đi là x (h) ( x>o)
Thời gian về là x+34(h)
Quãng đường đi 15x 3/4 (km)
Quãng đường về 12(x+3/4)(km)
Vì quãng đường AB lúc đi và về không đổi ---> phương trình
15x=12(x+34)
---> x=3(tmđk)
--->quãng đường AB dài :15.3=45(km)
Vậy......
Gọi thời gian đi là x (h) ( x>o)
Thời gian về là \(x+\frac{3}{4}\)(h)
Quãng đường đi 15x (km)
Quãng đường về \(12\left(x+\frac{3}{4}\right)\)(km)
Vì quãng đường AB lúc đi và về không đổi ---> phương trình
\(15x=12\left(x+\frac{3}{4}\right)\)
---> x=3(tmđk)
--->quãng đường AB dài :\(15.3=45\)(km)
Đ/S:.....
\(45p=\dfrac{3}{4}h\)
Gọi độ dài quãng đường AB là x (km) (x>0)
Thời gian người đó đi từ A đến B là \(\dfrac{x}{18}\) (h)
Thời gian đi từ B về A là \(\dfrac{x}{12}\) (h)
Vì thời gian về nhiều hơn thời gian đi \(\dfrac{3}{4}h\), ta có pt:
\(\dfrac{x}{12}-\dfrac{x}{18}=\dfrac{3}{4}\Leftrightarrow3x-2x=27\Leftrightarrow x=27\)
Vậy độ dài AB là 27 km
Gọi quãng đường $AB$ là $x(km;x>0)$
Thời gian đi từ $A$ đến $B$ là $\dfrac{x}{15}(h)$
Lúc về người đó đi với số thời gian là $\dfrac{x}{12}(h)$
do thời gian về lâu hơn thời gian đi là $45p=\dfrac{3}{4}(h)$
Nên ta có phương trình: $\dfrac{x}{15}+\dfrac{3}{4}=\dfrac{x}{12}$
$⇔\dfrac{3x}{180}=\dfrac{3}{4}$
$⇔x=\dfrac{3}{4}.180:3=45$
Vậy quãng đương $AB$ dài $45$ km
Gọi a là quãng đường AB (a>0)
Thời gian đi là : \(\frac{x}{12}\)
Thời gian về : \(\frac{x}{10}\)
Vì thời gian về nhiều hơn thời gian đi \(45'=\frac{3}{4}h\)nên ta cs pt :
\(\frac{x}{12}+\frac{x}{10}=\frac{3}{4}\)
\(\Leftrightarrow\frac{12x}{120}-\frac{10x}{120}=\frac{90}{120}\)
\(\Leftrightarrow\frac{12x-10x}{120}=\frac{90}{120}\)
\(\Leftrightarrow\frac{2x}{120}=\frac{90}{120}\)
\(\Leftrightarrow2x=90\Leftrightarrow x=45\)
- Đổi \(45\)phút \(=\)\(\frac{3}{4}\)giờ
- Gọi quãng đường từ A đến B là: \(x\)\(\left(x\inℚ^+,km\right)\)
- Thời gian người đó đi từ A đến B là: \(\frac{x}{12}\)( giờ )
- Thời gian người đó đi từ B về A là: \(\frac{x}{10}\)( giờ )
- Vì thời gian lúc về nhiều hơn lúc đi \(45\)phút ( \(\frac{3}{4}\)giờ ) nên:
- Ta có: \(\frac{x}{10}-\frac{x}{12}=\frac{3}{4}\)
\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{1}{12}\right)=\frac{3}{4}\)
\(\Leftrightarrow x.\frac{6-5}{60}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}:\frac{1}{60}\)
\(\Leftrightarrow x=\frac{3}{4}.60=45\)
Vậy quãng đường từ A đến B dài \(45\)\(km\)