\(\lambda_1=0,75\mu m\) và tí...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Ta có công thức:
\(n=a+\dfrac{b}{\lambda^2}\), trong đó a,b là các hằng số phụ thuộc môi trường.
Lập hệ pt \(\Rightarrow\left\{{}\begin{matrix}a=1,484\\b=8,944.10^{-15}\end{matrix}\right.\)
thay số \(\Rightarrow n_{vàng}=a+\dfrac{b}{\left(\lambda_{vàng}\right)^2}=1,484+\dfrac{8,944.10^{-15}}{\left(0,58.10^{-6}\right)^2}=1,51\)

11 tháng 1 2016

     \(x_s= k\frac{\lambda D}{a}.\) 
     \(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)

=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)

Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.

\(\frac{1,5.10^{-6}}{750.10^{-9}}=2.\)(chọn)
\(\frac{1,5.10^{-6}}{675.10^{-9}}=2,222.\)(loại)
\(\frac{1,5.10^{-6}}{600.10^{-9}}=2,5.\)(loại)
 
 

 

3 tháng 2 2016

Vân trung tâm sẽ bị dịch chuyển lên phía trên một khoảng là 

\(x = \frac{e.(n-1)D}{a}=\frac{10.(1,5-1).2}{0,6}=16,7mm = 1,67cm.\)

29 tháng 5 2016

Trong thí nghiệm giao thoa ánh sáng khe Y- âng a = 0,6 mm, D = 2 m,λλ = 0,60 μmμm. Đặt ngay sau khe S1 (phía trên) một bản mỏng thủy tinh trong suốt có bề dày 10 μmμm và có chiết suất 1,5. Hỏi vân trung tâm dịch chuyển thế nào?

A.Dịch chuyển lên trên 1,67 mm.

B.Dịch chuyển xuống dưới 1,67 mm.

 Dịch chuyển lên trên 1,67 cm.

D.Dịch chuyển xuống dưới 2,67 mm.

30 tháng 4 2016

Tóm tắt:

\(a=10^{-3}m\)

\(D=0,5m\)

\(\lambda_1=0,64\mu m\)

\(\lambda_2=0,6\mu m\)

\(\lambda_3=0,54\mu m\)

\(\lambda_4=0,48\mu m\)

\(\Delta x=?\)

Giải:

Khi vân sáng trùng nhau:  

\(k_1\lambda_1=\)\(k_2\lambda_2=\)\(k_3\lambda_3=\)\(k_4\lambda_4\)  \(\Leftrightarrow k_10,64\)\(=k_20,6\)\(=\)\(k_30,54\)\(=k_40,48\)

\(\Leftrightarrow\)\(k_164=k_260=k_354=k_448\)  \(\Leftrightarrow\) \(k_164=k_260=k_354=k_448\)

\(\Leftrightarrow k_132=k_230=k_327=k_424\)

BSCNN( 32;30;27;24 ) = 4320

\(k_1=\frac{4320}{32}=135\)

\(k_2=\frac{4320}{30}=144\)

\(k_3=\frac{4320}{27}=160\)

\(k_4=\frac{4320}{24}=180\)

Vậy \(\Delta x=135i_1=144i_2=160i_3=180i_4\)\(=0,0432m=4,32cm\)

\(\rightarrow D\)


3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

7 tháng 5 2016

Khi các vân sáng trùng nhau:  \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

      \(k_10,64=k_20,54=k_30,48\Leftrightarrow64k_1=54k_2=48k_3\Leftrightarrow32k_1=27k_2=24k_3\)

  \(BSCNN\left(32,27,24\right)=864\Rightarrow k_1=27;k_2=32;k_3=36\)

Vân sáng đầu tiên có cùng màu với vân sáng trung tâm : là vị trí Bậc 27 của \(\lambda_1\) trùng bậc 32 của\(\lambda_2\) trùng với bậc 36 của \(\lambda_3\)

Ta sẽ lập tỉ số cho đến khi: k1 = 27 ; k2 = 32 ; k3 = 36    

\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{27}{32}\)

\(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{8}{9}=\frac{16}{18}=\frac{24}{27}=\frac{32}{36}\)

\(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{15}{20}=\frac{18}{24}=\frac{21}{28}=\frac{24}{32}=\frac{27}{36}\) 

Vậy vị trí này có:

\(k_1=k_{đỏ}=27\)     (ứng với vân sáng bậc 27)

\(k_2=k_{lục}=32\)    (ứng với vân sáng bậc 32)

\(k_3=k_{lam}=36\)    (ứng với vân sáng bậc 36)

\(\rightarrow\)C

30 tháng 4 2016

        \(\lambda_1\)(tím)\(=0,42\mu m\) , \(\lambda_2\) (lục) \(=0,56\mu m\) , \(\lambda_3\) (đỏ) \(=0,7\mu m\)

Vì giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 11 cực đại giao thoa của ánh sáng đỏ \(\Rightarrow k_{đỏ}=k_3=12\)

Từ BSCNN \(\Rightarrow k_1=k_{tím}=20\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 19 vân màu tím

  \(\Rightarrow k_{lục}=k_2=15\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 14 vân màu lục.

\(\rightarrow A\)

1 tháng 8 2016

Hỏi đáp Vật lý

22 tháng 10 2016

chịu

31 tháng 10 2016

Trên màn có 19 vân sáng, suy ra bề rộng của trường giao thoa là: \(L=18.i\) (*)

Ta có: \(\dfrac{i}{i'}=\dfrac{\lambda}{\lambda'}=\dfrac{0,6}{0,4}=\dfrac{3}{2}\)

\(\Rightarrow i = \dfrac{3}{2}i'\), thay vào (*) ta có:

\(L=27.i'\)

Suy ra trên màn có 28 vân sáng.

29 tháng 1 2016

Khi đặt thêm một bản thủy tinh mỏng trước nguồn Sthì hệ vân sẽ dịch chuyển về phía S1 một đoạn là 

\(x = \frac{e(n-1)D}{a}= \frac{12.0,5.1}{1}=6 mm.\)

9 tháng 11 2017

Woh. This question is very easy. Does HOC24 have any difficult questions?