Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Do A B ' ∩ A ' B cắt nhau tại trung điểm mỗi đường.
Do đó d B ' = d A = d C
+) Dựng C H ⊥ B D ⇒ C H ⊥ A ' B D
+) Do đó: d B ' ; A ' B D = d C ; A ' B D = C H
= B C . C D B D = a 3 2 .
Đáp án A
Phương pháp: Cách xác định góc giữa đường thẳng và mặt phẳng:
Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).
Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.
Cách giải: ABCD là hình chữ nhật
Vì SA ⊥ (ABCD) nên (SC;(ABCD)) = (SC;AC) = S C A ^
Ta có: AB//CD, CD ⊂ (SCD) => d(B;(SCD)) = d(A;(SCD))
Kẻ AH ⊥ SD, H ∈ SD
Ta có:
Mà AH ⊥ SD => AH ⊥ (SCD) => d(A;(SCD)) = AH
Tam giác SAD vuông tại A,
Đáp án B.
Vẽ đường thẳng d qua B và song song với AC.
Gọi K, I lần lượt là hình chiếu của H trên d và SB, L là hình chiếu của H trên SK.
d ( D , ( S B C ) ) = 2 a 3 ⇔ d A ; ( A B C ) = 2 a 3 ⇔ d H , S B C = a 3 ⇔ H I = a 3
1 S H 2 = 1 H I 2 - 1 H B 2 ⇒ S H = a 5 5
sin K B H ⏞ = H K H B = sin C A B ⏞ = C B A C ⇒ H K = H B . C B A C = a 5 5
d A C ; S B = d A , S B K = 2 d H , S B K = 2 H L = 2 . S H . H K S H 2 + H K 2 = a 10 5
Đáp án A.
Ta có r 1 = O B = A O − A B = a − x
là bán kính đáy của khối trụ nhỏ.
Và r 2 = O A = a là bán kính đáy của
khối trụ lớn với chiều cao h = 2x
Suy ra thể tích cần tính là
V = V t l − V t n = π r 2 2 h − π r 1 2 h = 2 π x a 2 − a − x 2 = 2 π x 2 a x − x 2 ⇒ V = 2 π x 2 2 a − x = 8 π . x 2 . x 2 . 2 a − x ≤ 8 π . 8 a 3 27 = 64 π a 3 27 ⇒ V max = 64 π a 3 27 .