K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

tham khảo:

Thông tin trên không đủ để ta xác định độ cao của máy bay so với mặt đất phẳng, tại thời điểm 1 phút kể từ khi máy bay cất cánh mà chỉ tính được quãng đường bay của máy bay bay được.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Sau 1 phút cả 2 máy bay bay được quãng đường dài \(1.v = v\)

Áp dụng công thức tính độ cao của máy bay so với mặt đất, ta tính được độ cao của hai máy bay 1 và 2 như sau:

Độ cao của máy bay 1: \({h_1} = v.\sin {10^0} \approx 0,17v\)

Độ cao của máy bay 2: \({h_2} = v.\sin {15^0} \approx 0,26v\)

Do đó, ta thấy rằng độ cao của máy bay 2 lớn hơn độ cao của máy bay 1. Vì vậy, máy bay 2 ở độ cao so với mặt đất lớn hơn sau 1 phút kể từ khi cất cánh.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Đổi \(200km/h = \frac{{500}}{9}m/s\)

Mô hình hoá như hình vẽ, với \(OA\) là quãng đường máy bay bay được sau 2 giây, \(OH\) là độ cao của máy bay so với mặt đấy khi máy bay bay được sau 2 giây, độ lớn của góc \(\widehat {AOH}\) chỉ số đo góc giữa máy bay với mặt đất.

Sau 2 giây máy bay bay được quãng đường là: \(\frac{{500}}{9}.2 = \frac{{1000}}{9}\left( m \right)\)

Vì tam giác \(OAH\) vuông tại \(H\) nên ta có:

\(AH = OA.\sin \widehat {AOH} = \frac{{1000}}{9}.\sin {20^ \circ } \approx 38,0\left( m \right)\)

Vậy độ cao của máy bay so với mặt đất là 38 mét sau khi máy bay rời khỏi mặt đất 2 giây.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a, Xét tam giác AHT vuông tại H, ta có: 

\(cot\alpha=\dfrac{TH}{AH}\Rightarrow TH=AH\cdot cot\alpha=500\cdot cot\alpha\)

Vậy trên trục \(T_x\) tọa độ \(x_H=500\cdot cot\alpha\)

b, Ta có đồ thị của hàm số \(y=cot\alpha\) trong khoảng \(\dfrac{\pi}{6}< \alpha< \dfrac{2\pi}{3}\)

Khi đó:

 \(-\dfrac{1}{\sqrt{3}}< cot\alpha< \dfrac{1}{\sqrt{3}}\Leftrightarrow-\dfrac{500}{\sqrt{3}}< 500\cdot cot\alpha< \dfrac{500}{\sqrt{3}}\\ \Leftrightarrow-\dfrac{500}{\sqrt{3}}< x_H< \dfrac{500}{\sqrt{3}}\\ \Leftrightarrow-288,7< x_H< 866\)

Vậy \(x\in\left\{-288,7;866\right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(v\left(t\right)=h'\left(t\right)=-9,8t\)

a, Vận tốc của vật tại thời điểm t = 5s là \(v\left(5\right)=-9,8\cdot5=-49\left(m/s\right)\)

b, Khi vật chạm đất thì \(h\left(t\right)=100-4,9t^2=0 \Rightarrow t=\dfrac{10\sqrt{10}}{7}\left(s\right)\)

Khi đó, vận tốc vật chạm đất là: \(v\left(\dfrac{10\sqrt{10}}{7}\right)=-9,8\cdot\dfrac{10\sqrt{10}}{7}=-14\sqrt{10}\left(m/s\right)\)

30 tháng 9 2019

Đáp án A

P ( A ) = 1 - P ( A ) ¯

⇔ P ( A ) = 0 , 9999074656

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Lượng nước biển bơm vào hồ sau \(t\) phút là: \(15t\) (lít).

Khối lượng muối có trong hồ sau \(t\) phút là: \(30.15t\) (gam).

Sau \(t\) phút kể từ khi bắt đầu bơm, lượng nước trong hồ là: \(6000 + 15t\) (lít).

Nồng độ muối tại thời điểm \(t\) phút kể từ khi bắt đầu bơm là: \(C\left( t \right) = \frac{{30.15t}}{{6000 + 15t}} = \frac{{30.15t}}{{15\left( {400 + t} \right)}} = \frac{{30t}}{{400 + t}}\)(gam/lít).

b) \(\mathop {\lim }\limits_{t \to  + \infty } C\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{30t}}{{400 + t}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{30t}}{{t\left( {\frac{{400}}{t} + 1} \right)}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{30}}{{\frac{{400}}{t} + 1}} = \frac{{30}}{{0 + 1}} = 30\) (gam/lít).

Vậy nồng độ muối trong hồ càng dần về 30 gam/lít, tức là nước trong hồ gần như là nước biển, khi \(t \to  + \infty \).