K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi chiêu dài, chiều rộng lần lượtlà a,b

Theo đề, ta có: ab=720 và (a+6)(b-4)=ab

=>ab=720 và ab-4a+6b-24=ab

=>-4a+6b=24 và ab=720

=>2a-3b=-12 và ab=720

=>3b=2a+12

=>b=(2a+12)/3

ab=720

=>a*(2a+12)/3=720

=>(2a^2+12a)=2160

=>a=30

=>b=24

 

Gọi chiều dài HCN là x (x>0,m)

Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)

Theo bài ra ta có phương trình sau 

\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)

\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)

Tự thực hiện tiếp .... 

26 tháng 1 2021

Gọi chiều dài mảnh vườn là x ( x > 0 )

=> Chiều rộng mảnh vườn = 720/x ( m )

Tăng chiều dài 6m và giảm chiều rộng 4m

=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m

Khi đó diện tích mảnh vườn không đổi

=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )

Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )

=> Chiều dài mảnh vườn = 30m

Chiều rộng mảnh vườn = 720/30 = 24m

4 tháng 4 2022

nhớ tick cho mình nha

Gọi chiều dài hình chữ nhật là x thì chiều rộng là \(\frac{720}{x}\left(x>0\right)\left(m\right)\)
\(\Leftrightarrow720-6x+\frac{7200}{x}-60=720\)
\(\Leftrightarrow6x^2-7200+60x=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2+40x-30x-1200=0\)
\(\Leftrightarrow x\left(x+40\right)-30\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow x=30\)vì \(x>0\)
Vậy chiều dài là\(30m\), chiều rộng là \(\frac{720}{30}=24m\)

8 tháng 5 2021

Chiều rộng là 24m

 

Chiều dài mảnh vườn là 30m

30 tháng 5 2021

Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)

Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\) 

Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)

\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)

 

 

30 tháng 5 2021

Bài giải

Gọi chiều dài là x(m)

Gọi chiều rộng là y(m)

Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)

Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)

từ (1)(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)

từ (1) => x= \(\dfrac{80}{y}\)

Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5

Vậy...............................

 

25 tháng 8 2017

bn vô câu hỏi tương tự đi . Cx xó rất nhiều bn hỏi những bài dạng thế này rồi đó

25 tháng 8 2017

Ở chỗ nào, mk ms dùng nên k biết

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))

Vì khi giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông nên ta có phương trình:

\(\left(a-1\right)=b+1\)

\(\Leftrightarrow a-b=2\)(1)

Vì diện tích của mảnh vườn là 168m2 nên ta có phương trình: ab=168(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=2\\ab=168\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+2\right)\cdot b=168\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b-168=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b+1=169\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+1\right)^2=169\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b+1=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14\\b=12\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của mảnh vườn là 14m

Chiều rộng của mảnh vườn là 12m

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có: ab=300 và (a+10)(b-5)=ab

=>ab=300 và -5a+10b=50

=>ab=300 và -a+2b=10

=>-a=10-2b

=>a=2b-10

ab=300

=>b(2b-10)=300

=>2b^2-10b-300=0

=>b=15

=>a=20