Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài mảnh vườn là: `x (m)` `ĐK: x > 0`
`=>` Chiều rộng mảnh vườn là: `x-5 (m)`
`=>` Diện tích mảnh vườn là: `x (x-5) (m^2)`
Vì nếu tăng chiều rộng gấp đôi thì diện tích mảnh vườn tăng `300 m^2` nên ta có ptr:
`2(x-5).x=x(x-5)+300`
`<=>2x^2-10x=x^2-5x+300`
`<=>x^2-5x-300=0`
`<=>x^2-20x+15x-300=0`
`<=>(x-20)(x+15)=0`
`<=>` $\left[\begin{matrix} x=20(t/m)\\ x=-15(ko t/m)\end{matrix}\right.$
Vậy chiều dài mảnh vườn là `20 m`, chiều rộng là `20-5=15 m`
Gọi chiều dài là a (a khác 0) (m)
chiều rộng là a - 4 (m)
Diện tích là a . (a - 4) (m2)
Mà diện tích mảnh vườn bằng 320 m2 nên ta có pt:
a . (a - 4) = 320
Giải pt => a = 20
chiều dài là 20 m; chiều rộng là 16 m.
Gọi chiều dài là x (52>x>0)m
chiều rộng là 104:2-x m
diện tích ban đầu là x(52-x) m2
vì tăng chiều rộng để mảnh đất trở thành hình vuông nên cạnh hình vuông là x m
diện tích hình vuông là x2
vì khi tăng chiều rộng thì diện tích tăng 240 m2 nên ta có pt
x(52-x)=x2-240
giải pt x=-4 ktm
x=30 tm
chiều dài của hcn là 30 m
chiều rộng của hcn là 52-30=22 m
diện tích hcn ban đầu là 30.22=660 m2
Gọi chiều dài mảnh vườn ban đầu là x(m)
thì chiều rộng mảnh vườn ban đầu là 52-x(m)
Diện tích ban đầu của mảnh vườn là x(52-x)(m2)
Diện tích lúc sau của mảnh vườn là x2 =x(52-x)+240(m2)
Đk: 0<x<104
Theo đề bài ta có
\(x^2=x\cdot\left(52-x\right)+240\)
⇔\(x^2=52x-x^2+240\)
⇔\(-2x^2+52x+240=0\)
⇔\(\left[{}\begin{matrix}x=30\left(n\right)\\x=-4\left(l\right)\end{matrix}\right.\)
Vậy diện tích ban đầu của mảnh vườn là \(30\cdot\left(52-30\right)=660\)(m2)
Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x
Diện tích mảnh vườn ban đầu là: \(3x^2\left(m^2\right)\)
Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:
\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)
Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:
\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)
\(\Leftrightarrow3x^2+20x+25=3x^2+385\)
\(\Leftrightarrow20x=360\)
\(\Leftrightarrow x=18\)
=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m.
\(ĐKXĐ:x\ne1;-4\)
\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)
\(\Leftrightarrow-x^2+12x+4-16x-4=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow-x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))
Vì khi giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông nên ta có phương trình:
\(\left(a-1\right)=b+1\)
\(\Leftrightarrow a-b=2\)(1)
Vì diện tích của mảnh vườn là 168m2 nên ta có phương trình: ab=168(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=2\\ab=168\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+2\right)\cdot b=168\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b-168=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b+1=169\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+1\right)^2=169\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b+1=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14\\b=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh vườn là 14m
Chiều rộng của mảnh vườn là 12m