K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 4 2021

Lời giải:

Gọi chiều dài và chiều rộng ban đầu của hình chữ nhật lần lượt là $a$ và $b$ (m)

Theo bài ra ta có:

\(\left\{\begin{matrix} a-b=12\\ (a-8)(b+5)=ab-13\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b+12\\ 5a-8b=27\end{matrix}\right.\Rightarrow 5(b+12)-8b=27\)

\(\Rightarrow b=11\) (m)

$a=b+12=23$ (m)

 

22 tháng 4 2021

gọi chiều rộng ban đầu của mảnh vườn HCN là : x (m;x>5)

chiều dài ban đầu của mảnh vườn HCN là : x + 12 (m)

diện tích ban đầu là x.(x+12)  (m2)

chiều rộng lúc sau của mảnh vườn HCN là : x + 5 (m)

chiều dài lúc sau của mảnh vườn HCN là x +12 - 8 = x +4

diện tích lúc sau là : (x+4).(x+5)

vì diện tích lúc sau giảm đi 13m2 nên ta có phương trình :

x(x+12) - (x+4)(x+5) = 13

\(x^2+12x-x^2-9x-20=13\)

\(3x-20=13\)

\(3x=33\)

\(x=11\)

giá trị x =11 thỏa mãn điều kiện của ẩn 

chiều rộng ban đầu là : 11

chiều dài ban đầu là : 11+12 = 23