Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y
(21 > x > y > 0; m)
Vì mảnh đất hình chữ nhật có chu vi bằng 42m nên ta có (x + y). 2 = 42
Đường chéo hình chữ nhật dài 15m nên ta có phương trình: x 2 + y 2 = 152
Suy ra hệ phương trình:
x + y .2 = 42 x 2 + y 2 = 225 ⇔ x + y = 21 x 2 + y 2 = 225 ⇔ y = 21 − x x 2 + 21 − x 2 = 225 1
Giải phương trình (1) ta được:
2 x 2 − 42 x + 216 = 0 ⇔ x = 9 x = 12
Với x = 9 thì y = 12 (loại)
Với x = 12 thì y = 9 (thỏa mãn)
Vậy chiều rộng mảnh đất ban đầu là 9m.
Đáp án: C
Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y
(34 > x > y > 0; m)
Vì mảnh đất hình chữ nhật có nửa chu vi bằng 37m nên ta có x + y = 37
Đường chéo hình chữ nhật dài 26m nên ta có phương trình: x 2 + y 2 = 26 2
Suy ra hệ phương trình: x + y = 34 x 2 + y 2 = 676 ⇔ y = 37 − x x 2 + 37 − x 2 = 676 1
Giải phương trình (1) ta được:
2 x 2 – 68 x + 480 = 0 ⇔ x 2 – 34 x + 240 = 0 ⇔ x ( x – 10 ) – 24 ( x – 10 ) = 0
⇔ (x – 10) (x – 24) = 0 ⇔ x = 10 ⇒ y = 24 L x = 24 ⇒ y = 10 N
Vậy chiều dài mảnh đất ban đầu là 24m
Đáp án: A
Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m
Lời giải:
Gọi chiều rộng hình chữ nhật là $a$ m thì chiều dài là $a+6$ m
Bình phương độ dài đường chéo: $a^2+(a+6)^2$ theo định lý Pitago
Theo bài ra ta có:
$a^2+(a+6)^2=10(a+a+6)$
$\Leftrightarrow 2a^2+12a+36=20a+60$
$\Leftrightarrow a^2-4a-12=0$
$\Leftrightarrow (a-6)(a+2)=0$
Vì $a>0$ nên $a=6$
Diện tích hình chữ nhật: $a(a+6)=6.12=72$ (m2)
Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)
=> chiều dài mảnh đất là x+6 (m)
Theo định lý Pytago ta có độ dài đường chéo là:
Vậy diện tích mảnh đất là
Gọi chiều dài, chiều rộng mảnh đất lần lượt là: `x;y (m)`
`ĐK: y > x; x,y > 0;y > 6`
Theo bài ra ta có hệ ptr:
`{(y-x=6),(x^2+y^2=5.2.(x+y)):}`
`<=>{(x-y=-6<=>x=y-6),(x^2+y^2-10x-10y=0):}`
`<=>(y-6)^2+y^2-10(y-6)-10y=0`
`<=>y^2-12y+36+y^2-10y+60-10y=0`
`<=>2y^2-32y+96=0`
`<=>[(y=12(t//m)),(y=4(ko t//m)):}`
`=>x=12-6=6`
Vậy `CD=12 m ; CR=6 m`
bạn ơi, đã gọi chiều dài là x và chiều rộng là y thì sao suy y - x = 6 được??
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của hình chữ nhật(Điều kiện: 0<a<14; 0<b<14 và \(a\ge b\))
Vì chu vi của mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
\(\Leftrightarrow a+b=14\)(1)
Ta có: a+b=14(cmt)
mà \(a\ge b\)
nên 2a>14
hay a>7
\(\Leftrightarrow b< 7\)
Vì độ dài đường chéo mảnh đất là 10m nên ta có phương trình:
\(a^2+b^2=10^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2+b^2-28b+196-100=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left[{}\begin{matrix}b=6\left(nhận\right)\\b=8\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-6=8\left(nhận\right)\\b=6\end{matrix}\right.\)
Vậy: Chiều dài của mảnh đất là 8m; chiều rộng của mảnh đất là 6m
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)(TM)
Vậy HPT có nghiệm (x;y)= (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 8cm và 6cm