K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Đáp án A

Phương pháp giải: Dựa vào hệ thức lượng trong tam giác và công thức lượng giác xác định độ lớn của góc cần tính thông qua khoảng cách. Khảo sát hàm số tìm min – max

Lời giải: Với bài toán này, ta cần xác định OA để góc BOC lớn nhất. Điều này xảy ra khi tan BOC lớn nhất.

Đặt OA = x(m) với x > 0. Ta có:

10 tháng 10 2018

28 tháng 2 2017

9 tháng 2 2017

Đáp án B

Đặt A D = x → C D = 9 − x suy ra B D = 9 − x 2 + 36 km

Chi phí lắp đặt trên đoạn AD (trên bờ) là T 1 = 100 x  triệu đồng

Chi phí lắp đặt trên đoạn DB (dưới nước) là T 2 = 260 9 − x 2 + 36  triệu đồng

Vậy tổng chi phí cần tính là  T = T 1 + T 2 = 100 x + 260 9 − x 2 + 36 → f x

Xét hàm số f x = 100 x + 260 x 2 − 18 x + 117  trên đoạn 0 ; 9 → min 0 ; 9 f x = 2340

Dấu = xảy ra khi và chỉ khi x = 13 2 = 6 , 5 km

4 tháng 1 2020

Đáp án là D.

 

Đặt C D = x , x ∈ 0 ; 9 . Ta có B D = x 2 + 36  

Chi phí xây dựng đường ống f x = 100 9 − x + 260 x 2 + 36  

Ta có:

f ' x = − 100 + 260 x x 2 + 36 ,   c h o   f ' x = 0 ⇔ 5 x 2 + 36 = 13 x ⇔ x = 5 2  

f 0 = 2460 ;    f 5 2 = 2340 ;    f 9 ≈ 2812 , 33

Chi phí thấp nhất x = 5 2 . Khoảng cách từ A đến D là: 6,5km

13 tháng 5 2018

4 tháng 6 2017

Đáp án đúng : D

Dynano là một nhà ảo thuật gia đại tài người Anh nhưng người ta thường nói Dynano làm ma thuật chứ không phải làm ảo thuật. Bất kì màn trình diễn nào của anh chàng trẻ tuổi tài cao này khiến người xem kinh ngạc vì nó vượt qua giới hạn khoa học. Một lần đến NewYork anh ngẫu hứng trình diễn khả năng bay lơ lửng trong không trung của mình bằng cách di chuyển từ tòa nhà này đến tòa nhà...
Đọc tiếp

Dynano là một nhà ảo thuật gia đại tài người Anh nhưng người ta thường nói Dynano làm ma thuật chứ không phải làm ảo thuật. Bất kì màn trình diễn nào của anh chàng trẻ tuổi tài cao này khiến người xem kinh ngạc vì nó vượt qua giới hạn khoa học. Một lần đến NewYork anh ngẫu hứng trình diễn khả năng bay lơ lửng trong không trung của mình bằng cách di chuyển từ tòa nhà này đến tòa nhà khác và trong quá trình di chuyển đó có một lần anh đáp đất tại một điểm trong khoảng cách giữa hai tòa nhà (biết mọi di chuyển của anh đều là đường thẳng). Biết tòa nhà ban đầu Dynano đứng có chiều cao là a(m), tòa nhà sau đó Dynano đến có chiều cao là b(m) (a < b) và khoảng cách giữa hai tòa nhà là c(m). Vị trí đáp đất cách tòa nhà thứ nhất là một đoạn là x(m). Hỏi x bằng bao nhiêu quãng đường di chuyển của Dynano là bé nhất?

A. x = 3 a c a + b .

B. x = a c 3 a + b .

C. x = a c a + b .

D. x = a c 2 a + b .

1
27 tháng 3 2017

Đáp án C.

Màn biểu diễn của Dynano được biểu diễn theo mô hình bên

Cách 1: Áp dụng kiến thức “Giá trị lớn nhất – Giá trị nhỏ nhất của hàm số”

Ta có   A B = c , A C = a , A D = b , A M = x . Khi đó  C M = A C 2 + A M 2 = x 2 + a 2

M D = B M 2 + B D 2 = ( c − x ) 2 + b 2 = x 2 − 2 c x + b 2 + c 2  

Như vậy quãng đường di chuyển của Dynano là 

T = C M + M D = x 2 + a 2 + x 2 − 2 c x + b 2 + c 2 ( 0 < x < c ) .

Xét hàm số x 2 + a 2 + x 2 − 2 c x + b 2 + c 2 trên ( 0 ; c ) .  

Đạo hàm f ' ( x ) = x x 2 + a 2 + x − c x 2 − 2 c x + b 2 + c 2 = 0  

⇔ x x 2 − 2 c x + b 2 + c 2 = ( c − x ) x 2 + a 2 ⇔ x 2 c − x 2 + b 2 = c − x 2 x 2 + a 2  

⇔ x 2 b 2 = c - x 2 a 2 ⇔ b x = ( c − x ) a ⇔ x = a c a + b ∈ ( 0 ; c ) .

Lập bảng biến thiên tìm ta được f(x)  đạt nhỏ nhất khi   x = a c a + b .

Cách 2: Dùng kiến thức hình học

Gọi D' là điểm đối xứng với D qua AB. Khi đó  M C + M D = M C + M D ' ≥ C D ' . Do vậy  ( M C + M D ) min = C D ' . Dấu =  xảy ra khi M ∈ C D '  hay M = C D ' ∩ A B  .

Khi đó Δ A M C ∽ △ B M D '

  ⇒ A M B M = A C B D ' ⇔ x c − x = a b ⇔ x = a c a + b

6 tháng 2 2017

3 tháng 8 2018

Đáp án B.

Gọi x, y là các kích thước của hình chữ nhật với bán kính đường bán nguyệt r = x 2  

Ta có: 2 x + y + π x 2 − x = 1 + π 2 x + 2 y = a

 

Diện tích của cửa sổ là:

S = x y + π r 2 3 = x y + π x 2 8 = x y + π x 8 = x a − x − π x 2 2 + π x 8

 

Dấu “=” xảy ra khi x = a π 4 + 1 − x ⇔ 2 x = a π 4 + 1 ⇒ x = 2 a π + 4 = d

 

S = x a 2 − π 8 + 1 2 x = π 8 + 1 2 . x a π 4 + 1 − x ≤ π 8 + 1 2 . x + a π 4 + 1 − x 2 4 = a 2 2 π + 8