Một mạch dao động LC có cuộn cảm thuần có độ tự cảm L = 10-3/π H và tụ điện...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Đáp án C                                                    

Phương pháp: Áp dụng công thức tính bước sóng của sóng điện từ

 

 

26 tháng 2 2016

\(1=LC\omega^2=LC4\pi^2f^2\)

\(C=\frac{1}{L4\pi^2f^2}=\frac{8.10^{-6}}{\pi}F\)

 

\(\rightarrow A\)

26 tháng 2 2016

câu chả lời của tao cho mày là chiêu:GIA LỰC QUYỀN

5 tháng 7 2016

vật lý phổ thông 10-11-12 Mạch điện xoay chiều R, L, C mắc nối tiếp

5 tháng 7 2016

B,1/π (H).

15 tháng 2 2016

\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)

Mặt khác L thay đổi để :  \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)

\(\Rightarrow chọn.D\)

 

 

14 tháng 6 2016

+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V

20 tháng 7 2016

Ta có: \(W=W_t+W_d\)

\(\Leftrightarrow W_t=W_{dmax}-W_d\)

\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)

\(=5.10^{-5}J\)

12 tháng 1 2016

Khoảng thời gian liên tiếp giữa hai lần điện trường bằng năng lượng từ trường là \(\frac{T}{4}= \frac{\pi\sqrt{LC}}{2}.\).

 

15 tháng 6 2016

Dao động và sóng điện từ

15 tháng 6 2016

p ơi p xem lại xem đáp án là 15 độ

11 tháng 6 2016

Ta có Um không đổi và để UAm luôn không đổ vs mọi gtri của R thì : Um=UAm   hay  ZL=2ZC =2.100=200 → L=2/π  ( D)

                 Sử dụng hình vẽ suy luận cho nhanh :              R ZL ZC UAm Um

                  

14 tháng 12 2015

\(T = 2\pi .\sqrt{LC} = 2.10^{-5}s.\)

Thời gian từ lúc hiệu điện thế trên tụ cực đại U0 đến lúc hiệu điện thế trên tụ \(+\frac{U_0}{2}\) tính dựa vào đường tròn

U 0 +U 0 2

\(\cos \varphi = \frac{U_)/2}{U_0}= \frac{1}{2}=> \varphi= \frac{\pi}{3}. \)

\( t = \frac{\varphi}{\omega}= \frac{\pi/3}{2\pi/T}= \frac{T}{6}= \frac{1}{3}.10^{-5}s.\)

 

28 tháng 7 2016

Áp dụng công thức tính năng lượng điện từ trường ta có
W = Wđ = Wt \(\Rightarrow\frac{1}{2}LI_0^2=\frac{1}{2}lI^2+\frac{1}{2}Cu^2\)
\(\Rightarrow u=\sqrt{\left(I_0^2-I^2\right)\frac{L}{C}}\Rightarrow u=\)\(\sqrt{\frac{0,1}{10^{-5}}\left(0,05^2-0,02^2\right)}=4\left(V\right)\)

chọn A