Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C = \frac{1}{\omega^2.L}= 5.10^{-6}F.\)
\(U_0 = \frac{q_0}{C}= \frac{I_0}{C.\omega}= \frac{I_0.\sqrt{L}}{\sqrt{C}} = 8V.\)
\(i = I = \frac{I_0}{\sqrt{2}}. \)
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
=> \(\left(\frac{u}{U_0}\right)^2 = 1- \left(\frac{i}{I_0}\right)^2 = 1 - \frac{1}{2}= \frac{1}{2}\)
=> \(u = \frac{1}{\sqrt{2}}U_0= 4\sqrt{2}V.\)
Ta có: \(\frac{1}{2}CU^2_{max}=\frac{1}{2}Li^2+\frac{1}{2}C^2_u\Rightarrow i=\sqrt{\frac{C}{L}\left(U^2_{max}-u^2\right)}\)\(=0,0447A=44,7mA\)
chọn D
\(\frac{1}{2}Li^2+\frac{1}{2}Cu^2=\frac{1}{2}CU_0^2\Rightarrow i=44,7mA\)
=> D đúng
Đáp án C
Phương pháp: Sử dụng công thức vuông pha giữa điện tích và cường độ dòng điện
Cách giải:
+ Ta có:
mình bị nhầm ở đáp án
A. \(\frac{4}{3}\mu s\) các câu khác cũng như vậy nhé
Năng lượng của mạch dao động W = \(\frac{Q_0^2}{2C}=\frac{LI^2_0}{2}\) → chu kì dao động của mạch
\(T=2\pi\sqrt{LC}=2\pi\frac{Q_0}{I_0}=16.10^{-6}\left(s\right)=16\mu s\).Thời gian điện tích giảm từ Q0 dến Q0/2
q = Q0cos \(\frac{2\pi}{T}t=\frac{Q_0}{2}\rightarrow\frac{2\pi}{T}t=\frac{\pi}{3}\rightarrow t=\frac{T}{6}=\frac{8}{3}\mu s\)
→ C
Đáp án C
u 2 = L C . I 0 2 − i 2 = > I 0 = 50 m A .