Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khối lượng Co bị phân rã là
\(\Delta m = m - m_0 = m_0 (1-2^{-\frac{t}{T}})\)
=> \(\frac{\Delta m }{m_0} = 1-2^{-\frac{1}{5,33}}= 0,122.\)
=> Sau 1 năm thì khối lượng Co bị phân rã chiếm 12,2 % khối lượng Co ban đầu.
Khối lượng chất phóng xạ đã bị phân rã là
\(\Delta m = m_0(1-2^{-\frac{t}{T}}) \)
=> \(\frac{\Delta m }{m_0}= 0,75 =1- 2^{-\frac{t}{T}}\)
=> \(t = -T\ln_20,25 = 30h.\)
Số hạt nhân chưa phóng xạ chính là số hạt nhân còn lại
\(N= N_0 2^{-\frac{t}{T}}= N_0 .2^{-4}= \frac{1}{16}N_0.\)
Ban đầu có \(N_0\) hạt
Sau 1 năm, còn lại \(N_1=\dfrac{N_0}{3}\)
Sau 1 năm nữa, còn lại là: \(N_2=\dfrac{N_1}{3}=\dfrac{N_0}{9}\)
Chọn C.
Ban đầu có N0N0 hạt
Sau 1 năm, còn lại N1=N03N1=N03
Sau 1 năm nữa, còn lại là: N2=N13=N09N2=N13=N09
Chọn C.
Số hạt nhân ban đầu
\(N_0= \frac{H_0}{\lambda}\)
Khối lượng ứng cới độ phóng xạ \(H_0\) là
\(m_0 = nA= \frac{N_0}{N_A}A= \frac{H_0}{N_A}= \frac{5.3,7.10^{10}.14}{6,02.10^{23} \frac{\ln 2}{5570.365.24.3600}}= 1,09g.\)
Số hạt nhân chưa bị phân rã (số hạt nhân còn lại)
\(N= N_0 2^{-\frac{t}{T}} = N_02^{-\frac{0,5T}{T}}= N_02^{-0,5}= \frac{N_0}{\sqrt{2}}.\)
Khối lượng Rn còn lại sau 1,5 chu kì là: \(m=m_0.2^{-1,5}=2.2^{-1,5}(g)\)
Độ phóng xạ là: \(H=N.\lambda=\dfrac{2.2^{-1,5}}{222}.6,02.10^{23}.\dfrac{\ln 2}{3,8.24.3600}=...\)
\(H=H_02^{-\frac{t}{T}}\)
=> \(\frac{H}{H_0}=32^{-1}= 2^{-5}= 2^{-\frac{t}{T}}\)
=> \(t = 5T= 690.\)(ngày)
Đáp án C
Áp dụng định luật phóng xạ: