K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Số học sinh thích cả bóng chuyền và bóng rổ là: 23 + 18 – 26 = 15 (học sinh)

Gọi A là biến cố “Học sinh thích bóng chuyền”; B là biến cố “Học sinh thích bóng rổ”; E là biến cố “Học sinh không thích cả bóng chuyền và bóng rổ”.

Khi đó \(\overline E \) là biến cố “Học sinh thích bóng chuyền hoặc bóng rổ”.

Ta có \(\overline E  = A \cup B.\)

\(P\left( A \right) = \frac{{23}}{{40}},P\left( B \right) = \frac{{18}}{{40}} = \frac{9}{{20}},P\left( {AB} \right) = \frac{{15}}{{40}} = \frac{3}{8}\)

\(\begin{array}{l}P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{40}} + \frac{9}{{20}} - \frac{3}{8} = \frac{{13}}{{20}}\\ \Rightarrow P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - \frac{{13}}{{20}} = \frac{7}{{20}}\end{array}\)

Vậy xác suất để chọn được học sinh không thích cả bóng chuyền và bóng rổ là \(\frac{7}{{20}}\).

Đáp án B.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Số học sinh thích cả bóng chuyền và bóng rổ là: 23 + 18 – 26 = 15 (học sinh)

Số học sinh thích bóng chuyền và không thích bóng rổ là 23 – 15 = 8 (học sinh)

Vậy xác suất để chọn được học sinh thích bóng chuyền và không thích bóng rổ là \(\frac{8}{{40}} = \frac{1}{5}\)

Đáp án C

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Gọi    A: “Học sinh thích môn Bóng đá”

B: “Học sinh thích môn Bóng bàn”

Do đó ta có \(P\left( A \right) = \frac{{19}}{{30}},P\left( B \right) = \frac{{17}}{{30}},P\left( {AB} \right) = \frac{{15}}{{30}}\)

Theo công thức cộng xác suất

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{19}}{{30}} + \frac{{17}}{{30}} - \frac{{15}}{{30}} = \frac{{21}}{{30}} = \frac{7}{{10}}\)

Vậy xác suất để chọn được học sinh thích ít nhất một trong hai môn Bóng đá hoặc Bóng bàn là \(\frac{7}{{10}}\)

QT
Quoc Tran Anh Le
Giáo viên
25 tháng 8 2023

Cặp biến cố E và F không xung khắc vì nếu học sinh được chọn thích môn Bóng đá thì cả E và F có thể xảy ra vì có 2 bạn thích cả hai môn Bóng đá và Cầu lông.

Vì có 2 bạn cùng thích bóng đá và cầu lông

nên hai biến cố E và F không xung khắc

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Gọi A là biến cố “Bạn đó thích nhạc cổ điển”, B là biến cố “Bạn đó thích nhạc trẻ”, C là biến cố “Bạn đó không thích cả nhạc cổ điển và nhạc trẻ”.

a) Xác suất bạn đó thích nhạc cổ điển là \(P\left( A \right) = \frac{{14}}{{40}} = \frac{7}{{20}}\)

Xác suất bạn đó thích nhạc trẻ là \(P\left( B \right) = \frac{{13}}{{40}}\)

Xác suất bạn đó thích cả nhạc cổ điển và nhạc trẻ là \(P\left( C \right) = \frac{5}{{40}} = \frac{1}{8}\)

Xác suất bạn đó thích nhạc cổ điển hoặc nhạc trẻ là

 \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{7}{{20}} + \frac{{13}}{{40}} - \frac{1}{8} = \frac{{11}}{{20}}\)

b) Ta có \(\overline C  = A \cup B\) nên xác suất để bạn đó không thích cả nhạc cổ điển và nhạc trẻ là

\(P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - P\left( {A \cup B} \right) = 1 - \frac{{11}}{{20}} = \frac{9}{{20}}\)

18 tháng 12 2018

Ta có n(Ω) = 40

c) Nhận thấy :

Mà P(A∪B) = P(A) + P(B) –P(A∩B), A∩B là biến cố:”học sinh được chọn giỏi cả Văn và Toán” nên n(A∩B)=5/40=1/8

Chọn đáp án C

Nhận xét:

ở ý a) và b) học sinh có thể nhầm khi quan niệm: chọn 1 học sinh nên n(A) =n(B) =1 ⇒ phương án A; hoặc chọn 1 học sinh trong 5 học sinh giỏi Toán và Văn nên n(A) =n(B) = 5

⇒ P(A) =P(B) =5/40=1/8 (phương án D); hoặc sử dụng nhầm công thức P(A) =(n(Ω))/(n(A))=8/3;P(B)=(n(Ω))/(n(B))=4 (phương án C)

ở ý c), học sinh có thể nhầm khi quan niệm:

Nhưng  A ¯   v à   B ¯ không phải là hai biến cố độc lập

Có thể giải ý c) cách khác như sau:

Số học sinh giỏi Văn và Toán gồm: học sinh giỏi Văn, học sinh hioir Toán, học sinh giỏi cả Văn và Toán nên bằng (15 +10) -5 = 20 em. Do đó, số học sinh không giỏi cả Toán và Văn là 40 – 20 = 20 em, nên n(C) = 20

Vì vậy P(C) =(n(C))/(n(Ω))=1/2

16 tháng 11 2018

Ta có n(Ω) = 40

a) Rõ ràng n(A) = 15 nên P(A) = 15/40 = 3/8

Chọn đáp án là C

19 tháng 9 2018

Ta có n(Ω) = 40

b) Rõ ràng n(B) = 10 nên P(B) = 10/40 =1/4

Chọn đáp án B

22 tháng 5 2019

Gọi B là tập hợp “học sinh thích học Lý”

Gọi C là tập hợp ” học sinh thích học ít nhất một môn “

Ta có n(C) = n( A B) = n(A) + n(B) – n(A ∩ B) = 30 + 25 – 10 = 45

Vậy xác suất để được học sinh này thích học ít nhất là một môn Toán hoặc Lý là: 

Chọn B.

AH
Akai Haruma
Giáo viên
29 tháng 8 2021

Lời giải:

a. Xác suất chọn hsg là:

$\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}=\frac{17}{50}$

b.

Chọn ngẫu nhiên 3 hs, có $C^3_{100}$ cách chọn 

Số hsg là: $(\frac{40}{100}.\frac{70}{100}+\frac{20}{100}.\frac{30}{100}).100=34$ (hs)

Chọn ngẫu nhiên được 2 hsg có $C^2_{34}C^1_{100-34}=C^2_{34}.C^1_{66}$ cách chọn 

Xác suất cần tìm: $p=\frac{C^2_{34}.C^1_{66}}{C^3_{100}}=\frac{561}{2450}$