K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Mô hình hoá đèn đá muối bằng hình chóp tứ giác đều \(S.ABC{\rm{D}}\).

Gọi \(O\) là tâm của đáy.

\(\Delta SAC\) cân tại \(S\) \( \Rightarrow SO \bot AC\)

\(\Delta SBD\) cân tại \(S\) \( \Rightarrow SO \bot B{\rm{D}}\)

\( \Rightarrow SO \bot \left( {ABCD} \right)\)

\(ABCD\) là hình vuông \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2  \Rightarrow AO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SAO\) vuông tại \(O \Rightarrow SO = \sqrt {S{A^2} - A{O^2}}  = \frac{{a\sqrt 2 }}{2}\)

\(\begin{array}{l}{S_{ABC{\rm{D}}}} = A{B^2} = {a^2}\\{V_{S.ABC{\rm{D}}}} = \frac{1}{3}.{S_{ABC{\rm{D}}}}.SO = \frac{{{a^3}\sqrt 2 }}{6}\end{array}\)

28 tháng 3 2018

26 tháng 2 2017

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Diện tích một mặt bên của lồng đèn là: \(10.30 = 300\left( {c{m^2}} \right)\)

Tổng diện tích các mặt bên của chiếc lồng đèn đó là: \(300.6 = 1800\left( {c{m^2}} \right)\)

2 tháng 12 2018

Kẻ SG vuông góc (ABC)

S.ABC là khối chóp đều

=>ΔABC đều

=>G là trọng tâm, là trực tâm của ΔABC

Gọi giao của AG với BC là D

=>D là trung điểm của BC

ΔABC đều có AD là trung tuyến

nên \(AD=\dfrac{a\sqrt{3}}{2}\)

=>\(AG=\dfrac{a\sqrt{3}}{2}\cdot\dfrac{2}{3}=\dfrac{a\sqrt{3}}{3}\)

ΔSAG vuông tại G nên \(SG=\sqrt{SA^2-AG^2}=\sqrt{b^2-\dfrac{1}{3}a^2}\)

\(V_{S.ABC}=\dfrac{1}{3}\cdot S_{ABC}\cdot SG=\dfrac{1}{3}\cdot\sqrt{b^2-\dfrac{1}{3}a^2}\cdot\dfrac{a^2\sqrt{3}}{4}\)

\(=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{\dfrac{3b^2-a^2}{3}}\)

Thể tích khối tứ diện đều có cạnh bằng a là:

\(V=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a^3\sqrt{2}}{12}\)

29 tháng 4 2019

1 tháng 8 2018

Đáp án A

Gọi H là tâm của tam giác đều ABC => SH ⊥ (ABC)

(SA;(ABC))

17 tháng 2 2017

Đáp án B

Ta có: 

Khi đó: 

Suy ra: 

15 tháng 6 2017

Đáp án D.

Gọi O là tâm của hình vuông ABCD.vì S.ABCD là hình chop đều nên SO ⊥ (ABCD)

Từ giả thiết, ta có 

Khối nón ngoại tiếp hình chóp S.ABCD có chiều cao 

và bán kính đáy là  

và bán kính đáy là 

Suy ra

Ta có SO là trục đường tròn ngoại tiếp hình vuông ABCD. Đường trung trực của SB nằm trong mặt phẳng (SBD) cắt SB, SO lần lượt tại M, I. Ta có IS = IB = IA = IC = ID nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có SI.SO = SM.SB

Suy ra 

Do đó  V 1 V 2   =   108 25

Phân tích phương án nhiễu.

Phương án A: Sai do HS nhớ nhầm công thức tính thể tích khối cầu là

Do đó tính được  V 1 V 2   =   324 25

Phương án B: Sai do HS nhớ nhầm công thức tính thể tích khối nón là

Do đó tính được  V 1 V 2   =   18 30 25

Phương án C: Sai do HS nhớ sai công thức tính thể tích khối nón là

Do đó tính được  V 1 V 2   =   36 25