Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Tần số góc của dao động ω = k m = 10 rad/s → T = 0,2 s.
→ Tốc độ của vật khi đi qua vị trí cân bằng v = v m a x = ω A = 20 3 cm/s.
+ Dưới tác dụng của ngoại lực con lắc dao động quanh vị trí cân bằng mới O′, tại vị trí này lò xo giãn một đoạn O O ' = Δ l 0 = F k = 2 100 = 2 cm.
+ Tại ví trí xuất hiện ngoại lực, con lắc có x ' = - 2 cm, v ' = v m a x
→ Biên độ dao động của con lắc lúc này A 1 = x ' 2 + v ' ω = 2 2 + 20 3 10 2 = 4 cm.
+ Ta chú ý rằng con lắc dao động quanh vị trí cân bằng mới O′ trong khoảng thời gian Δ t = T 6 = 1 30 s, sau khoảng thời gian này, vật có x 1 = 0 , 5 A 1 , v 1 = 3 v 1 m a x 2 = 3 ω A 1 2 = 3 10 π .4 2 = 20 3 π cm/s.
→ Ngừng lực tác dụng F, con lắc lại dao động quanh vị trí cân bằng cũ, lúc này con lắc có x ′ = O O ′ + 0 , 5 A 1 = 4 c m , v ' = v 1 = 20 3 π cm/s.
→ Biên độ dao động mới A 2 = x ' 2 + v ' ω 2 = 4 2 + 20 3 π 10 π 2 = 2 7 cm.
→ Vậy A 1 A 2 = 4 2 7 = 2 7
Đáp án A
Phương pháp: Cơ năng W = kA2/2
Cách giải:
- Vật nặng có khối lượng m:
A = ∆l0 = mg/k = 1.10/100 = 0,1m => W = kA2/2 = 100.0,12/2 = 0,5 (J)
- Khi gắn thêm vật nặng m0
=> Năng lượng dao động của hệ thay đổi 1 lượng: ∆W = W – W’ = 0,375 (J)
Đáp án D
+ Tại thời điểm ban đầu ta có ∆ l 0 = 10 c m
+ Đưa vật tới vị trí lò xo giãn 20 cm thì có thêm vật m2 = 0,25m1 gắn vào m1 nên khi đó ta sẽ vó VTCB mới O’ dịch xuống dưới so với O 1 đoạn bằng:
+ Khi về đến O thì m2 tuột khỏi m1 khi đó hệ chỉ còn lại m1 dao động với VTCB O, gọi biên độ khi đó là A1.
+ Vận tốc tại điểm O tính theo biên độ A’ bằng vận tốc cực đại của vật khi có biên độ là A1
+ Biên độ dao động của m1 sau khi m2 tuột là: A 1 = 20 10 10 0 . 1 = 2 10 ≈ 6 , 32 c m
Đáp án A
+ Độ giãn của lò xo tại vị trí cân bằng Δ l 0 = m g k = 0 , 1.10 100 = 1 cm.
Tần số góc dao động của con lắc ω = k m = 10 10 rad/s.
+ Vận tốc truyền cho vật m so với điểm treo có độ lớn v 0 = 10 + 40 = 50 cm/s.
→ Biên độ dao động của vật sau đó A = v 0 ω = 50 10 10 = 1 , 58 cm.
→ Chiều dài cực đại l m a x = l 0 + Δ l 0 + A = 27 , 58 c m .
Chọn đáp án D
? Lời giải:
+ Kéo vật đến vị trí lò xo giãn 5 cm rồi thả nhẹ, vật sẽ dao động quanh vị trí cân bằng với biên độ A = Δ l = 5 c m
+ Khi vật đi qua vị trí có li độ
lò xo tại điểm cách đầu cố định I một đoạn 0,75 chiều dài làm cho phần lò xo tham gia vào dao động mới của con lăc chỉ còn 0,25 → do đó thế năng của con lăc lúc sau chỉ còn lại là
+ Mặc khác độ cứng của lò xo tỉ lệ nghịch với chiều dài nên con lăc lúc sau sẽ có độ cứng gấp 4 lần con lắc lúc đầu
Chọn đáp án D
? Lời giải:
+ Kéo vật đến vị trí lò xo giãn 5 cm rồi thả nhẹ, vật sẽ dao động quanh vị trí cân bằng với biên độ A = Δ l = 5 c m
+ Khi vật đi qua vị trí có li độ x = A 2 = 2,5 cm, vật có độ năng Eđ = 3 E 4 và thế năng T t = E 4 → việc giữ chặt
lò xo tại điểm cách đầu cố định I một đoạn 0,75 chiều dài làm cho phần lò xo tham gia vào dao động mới của con lăc chỉ còn 0,25 → do đó thế năng của con lăc lúc sau chỉ còn lại là E t / = 0 , 25 E t = E 16 .
→ Vậy năng lượng dao động của con lăc lúc sau là: E / = E d + E t / = 3 E 4 + E 16 = 13 E 16 .
+ Mặc khác độ cứng của lò xo tỉ lệ nghịch với chiều dài nên con lăc lúc sau sẽ có độ cứng gấp 4 lần con lắc lúc đầu
⇒ E / = 13 E 16 ⇔ 1 2 4 k A / 2 = 13 16 . 1 2 k A 2 ⇒ A / = 13 4.16 A = 2 , 25 c m
Đáp án A
Ta có ∆l = mg/k = 0,025 m = 2,5 cm.
→ quãng thời gian ngược chiều nhau là T/6 →
vật
đi từ vị trí π/2 đến 2π/3 và -2π/3 đến –π/2.
→ -A/2 = 2,5 cm.
→ A = 5 cm.
Đáp án B
Hướng dẫn:
Ta có thể chia quá trình chuyển động của vật m thành hai giai đoạn sau.
Giai đoạn 1: Cùng m′ dao động điều hòa quanh vị trí cân bằng O.
+ Tần số góc của hệ dao động ω = k m + m ' = 10 0 , 1 + 0 , 1 = 5 2 rad/s.
Độ biến dạng của lò xo khi hệ cân bằng tại O: Δ l 0 = m + m ' g k = 0 , 2.10 10 = 20 cm.
→ Nâng hai vật đến vị trí lò xo không biến dạng rồi thả nhẹ → hệ sẽ dao động với biên độ A = Δ l 0 = 20 c m .
→ Tốc độ của vật khi đi qua vị trí cân bằng v = v m a x = ω A = 100 2 cm/s.
Giai đoạn 2: Dao động điều hòa quanh vị trí cân bằng O′.
Khi m′ tách ra khỏi m, m sẽ dao động điều hòa quanh vị trí cân bằng mới O′ nằm trên vị trí cân bằng cũ một đoạn O O ' = m ' g k = 0 , 1.10 10 = 10 cm.
+ Tần số góc của hệ dao động lúc này ω = k m = 10 0 , 1 = 10 rad/s.
→ Tại vị trí xảy ra biến cố, ta có x′ = 10 cm, v ' = v m a x = 100 2 cm/s.
→ Biên độ dao động mới A ' = x ' 2 + v ' ω ' 2 = 10 2 + 100 2 10 2 = 10 3 cm/s.
+ Tốc độ cưc đại v m a x = ω ' A ' = 10.10 3 = 3 m/s.