K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Đáp án D

Xét mặt cắt và lấy các điểm như hình vẽ bên cạnh.

Theo đề thì O A = O B = r = 30 cm và O H = h = 120 cm

Đặt O C = O D = R  là bán kính đường tròn đáy của khúc gỗ khối trụ thì:

E C O H = A C O A = O A − O C O A ⇔ E C h = r − R R ⇔ E C = 4 30 − R

Thể tích khúc gỗ khối trụ là

V = π R 2 . E C = 4 π . R 2 . 30 − R ⇒ f R = 30 R 2 − R 3

Xét hàm số f R  trên  0 ; 30 ⇒ max f R = 4000

Vậy thể tích lớn nhất của khối trụ  V = 0 , 016 m 3

6 tháng 11 2017

Đáp án D

Gọi r 0 ; h 0 lần lượt là bán kính đáy và chiều cao của khối trụ.

Theo giả thuyết, ta có:

  r 0 r = h − h 0 h ⇔ r 0 = 30. 120 − h 0 120 = 30 − h 0 4

Suy ra thể tích khối trụ là:

V = π r 0 2 . h 0 = π 30 − h 0 4 2 . h 0 = π . 120 − h 0 2 . h 0 16

Xét hàm số f t = t 120 − t 2 với t ∈ 0 ; 120 suy ra:  max 0 ; 120 f t = 256000

Vậy thể tích lớn nhất của khối trụ là:

  V max = π 256000 16 . 1 100 3 = 0 , 016 π   c m 3

6 tháng 11 2019

Phương pháp:

Cắt khối đa diện đã cho làm hai khối: khối lăng trụ và khối tứ diện.

Cách giải:

Gọi M là trung điểm của CC’.

Khi đó: khối đa diện đã cho được chia làm 2 phần: Khối lăng trụ tam giác đều A’B’M.ABC và khối tứ diện A’B’C’M.

Thể tích khối lăng trụ tam giác đều A’B’M.ABC là:

13 tháng 9 2019

Đáp án đúng : C

3 tháng 10 2018

28 tháng 2 2019

Phương pháp:

Khối đa diện có các đỉnh là trung điểm của các cạnh xuất phát từ đỉnh A và F của hình bát diện đều ABCDEF (như hình vẽ) là hình hộp chữ nhật.

Cách giải:

Khối đa diện có các đỉnh là trung điểm của các cạnh xuất phát từ đỉnh A và F của hình bát diện đều ABCDEF là hình hộp chữ nhật có đáy là hình vuông cạnh  a 2 ;

24 tháng 11 2019

9 tháng 3 2018

7 tháng 7 2019