Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh đó là a .
Vì khi xếp hàng 2,3,4,5,6 đều thiếu 1 người => a + 1 chia hết cho 2,3,4,5,6 và thuộc BC(2,3,4,5,6)
BCNN(2,3,4,5,6)= 60
Vậy BCNN (2,3,4,5,6) = B(60) = { 0;60;120;180;240;300;360}
Mà a < 300 và a chia hết cho 7
=> a + 1 = 120
=> a = 120 - 1
=> a = 119
Vậy số học sinh đó là 119
Gọi số học sinh đó là a .
Vì khi xếp hàng 2,3,4,5,6 đều thiếu 1 người => a + 1 chia hết cho 2,3,4,5,6 và thuộc BC(2,3,4,5,6)
BCNN(2,3,4,5,6)= 60
Vậy BCNN (2,3,4,5,6) = B(60) = { 0;60;120;180;240;300;360}
Mà a < 300 và a chia hết cho 7
=> a + 1 = 120
=> a = 120 - 1
=> a = 119
Vậy số học sinh đó là 119
gọi số đó là a có
a+1chia hết cho2,3,4=>a+1 thuộc TH BC(2,3,4)
BCNN(2,3,4)=12=>A=12-1=11
cần tìm số a chia hết cho 7 và <300 nên số cần tìm là17
Gọi số học sinh khối 6 của trường đó là a (a ∈ N*; a < 300).
Theo đề bài ta có: a + 1 ⋮ 2 , a + 1 ⋮ 3 , a + 1 ⋮ 4 , a + 1 ⋮ 5; a ⋮ 7
Do đó: a + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ a + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì a ∈ N* nên a ∈ { 59; 119; 179; 239; 299; 359; … }
Vì a < 300 nên a ∈ { 59; 119; 179; 239; 299 }
Mà a ⋮ 7 nên a = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
Gọi số học sinh khối 6 của trường đó là a (a ∈ N*; a < 300).
Theo đề bài ta có: a + 1 ⋮ 2 , a + 1 ⋮ 3 , a + 1 ⋮ 4 , a + 1 ⋮ 5; a ⋮ 7
Do đó: a + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ a + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì a ∈ N* nên a ∈ { 59; 119; 179; 239; 299; 359; … }
Vì a < 300 nên a ∈ { 59; 119; 179; 239; 299 }
Mà a ⋮ 7 nên a = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
Gọi số cần tìm là x ta có :
x:2 dư1
x:3 dư 1
x: 5 dư 1
x:6 dư1
x chia hết cho 7
\(\Rightarrow x+1\in BCNN\left(2;3;5;6\right)\)=B(30)
={0;30;60;90;120;150;180;210;240;270;300;...}
={29;59;89;119;149;179;209;239;269;299;...}
Trong đó số 119 chia hết cho 7
Vậy số cần tìm là 119
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Tính ước chung lớn nhất của 2 ; 3 ; 4 ; 5 ; 6 : \(ƯC\left(2;3;4;5;6\right)=\left\{60;120;180;240;...\right\}\)
Vì khi xếp hàng 2 ; 3 ; 4 ; 5 ; 6 đều thiếu một người tức là khi chia cho các số đó thì thiếu 1 để có phép chia hết
Mà số hs chưa đến 300 nên các số đó là \(\left\{59;119;179;239;299\right\}\)
Mà xếp hàng 7 thì vừa nên số hs chia hết cho 7. Ở đây có mỗi 119 chia hết cho 7
=> Vậy số học sinh là 119
Gọi a là số học sinh của một khối.(a ∈ N* và a < 300 )
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên:
(a + 1) ⋮ 2; (a + 1) ⋮ 3; (a + 1) ⋮ 4; (a + 1) ⋮ 5; (a + 1) ⋮ 6
Suy ra (a +1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301
Ta có: 2 = 2
3 = 3
4 = 22
5 = 5
6 = 2.3
=>BCNN(2; 3; 4; 5; 6) = 2.2.3.5 = 60
=>BC(2; 3; 4; 5; 6) = {0;60;120;180;240;300;360;...}
Vì a + 1 < 301 => a + 1 ∈ {60;120;180;240;300}
=>: a ∈ {59;119;179;239;299}
Ta có: 59 ⋮̸ 7; 119 ⋮ 7; 179 ⋮̸ 7; 239 ⋮̸ 7; 299 ⋮̸ 7
Vậy khối đó có 119 học sinh.