Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi m (m ∈ N* và m < 300 ) là số học sinh của một khối.
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên:
(m + 1) ⋮ 2; (m + 1) ⋮ 3; (m + 1) ⋮ 4; (m + 1) ⋮ 5; (m + 1) ⋮ 6
Suy ra (m +1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301
Ta có: 2 = 2
3 = 3
4 = 22
5 = 5
6 = 2.3
BCNN(2; 3; 4; 5; 6) = 2.2.3.5 = 60
BC(2; 3; 4; 5; 6) = {0;60;120;180;240;300;360;...}
Vì m + 1 < 301 nên m + 1 ∈ {60;120;180;240;300}
Suy ra: m ∈ {59;119;179;239;299}
Ta có: 59 ⋮̸ 7; 119 ⋮ 7; 179 ⋮̸ 7; 239 ⋮̸ 7; 299 ⋮̸ 7
Vậy khối có 119 học sinh.
Gọi số học sinh là a (0<a<300)
Vì a:2,3,4,5,6 đều thiếu 1
nên a+1 chia hết cho 2,3,4,6,5 (1<a+1<301)
vì a chia hết cho 7
nên (a+1):7(dư1)
ta có
2=2
3=3
4=2^2
5=5
6=2x3
Suy ra BCNN(2,3,4,5,6) = 2^2x3x5 = 60
BC(2,3,4,5,6) = B(60) = {0;60;120;180;240;360;...}
Mà 1<a+1<301
Suy ra a+1 = {60;120;180;240}
Ta có
60:7(dư4)
120:7(dư1)
180:7(dư 5)
240:7 (dư2)
Mà a+1:7(dư 1)
Suy ra a+1=120
a =120-1
a =119
Vậy số học sinh là 119
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Tính ước chung lớn nhất của 2 ; 3 ; 4 ; 5 ; 6 : \(ƯC\left(2;3;4;5;6\right)=\left\{60;120;180;240;...\right\}\)
Vì khi xếp hàng 2 ; 3 ; 4 ; 5 ; 6 đều thiếu một người tức là khi chia cho các số đó thì thiếu 1 để có phép chia hết
Mà số hs chưa đến 300 nên các số đó là \(\left\{59;119;179;239;299\right\}\)
Mà xếp hàng 7 thì vừa nên số hs chia hết cho 7. Ở đây có mỗi 119 chia hết cho 7
=> Vậy số học sinh là 119
gọi số hs là a
ta có :
a chia 2,3,4,5,6 đều thiếu 1
=>a+1 chia hết cho 2,3,4,5,6
=>a+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
5=5
6=2.3
=>BCNN(2,3,4,5,6)=22.3.5=60
=>a+1 thuộc B(60)=0;60;120;180;240;300...}
=>a thuộc {59;119;179;239;299...}
mà a<300 và a chia hết cho 7
=>a=119
Giải
Ta có số học sinh lớp đó là x thì x+1 chia hết cho 2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240﴾chú ý bội này phải dưới 300 hs﴿
Và +x+1=60
x=59﴾0 chia hết cho 7 loại﴿
+ x+1=120 x=119﴾chia hết cho 7 được﴿
+x+1=180 x=179﴾0 chia hết cho 7 loại﴿
+x+1=240 x=239﴾0 chia hết cho 7 loại﴿
Vậy số học sinh của lớp này là:119 hoc sinh Đáp số:119 học sinh
Tick nha !!!
Gọi số học sinh là a (0<a<300)
Ta có a+1 là bội chung của 2,3,4,5,6 và 1<a+1<301.Do a\(⋮\) 7 ta tìm được a+1=120 nên a=119.Số học sinh la 119 người
Gọi số học sinh của khối là x.
Khi xếp x học sinh vào hàng 2;3;4;5;6 đều thiếu 1 người nghĩa là x chia cho 2;3;4;5;6 dư 1.Xếp hàng 7 thì vừa đủ có nghĩa là x chia hết cho 7.
=> x+1\(⋮\) 2;3;4;5;6
=> x+1\(\in\)BC(2;3;4;5;6)
=> x+1 \(\in\) {0;60;120;180;260;320;....}
Mà 0\(\le\)x+1\(\le\)300
=> Nếu x+1=120 thì x= 119\(⋮\)7
Nếu x+1=180 thì x= 179\(⋮̸\) 7
Vậy số học sinh của khối là 119 em
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Gọi a là số học sinh cần tìm của khối ( a ∈ N* và a < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(a+1) ⋮2; (a + 1) ⋮3; (a + 1) ⋮ 4; (a+ 1) ⋮5; (a + 1) ⋮6
Suy ra: (a + 1) ∈ BC(2; 3; 4; 5; 6) và a + 1 < 301 (vì a < 300).
Ta có 2 = 2.1; 3 = 3.1; 4 = 2.2; 5 = 5.1 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 2.2.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì a + 1 < 301 nên a + 1 ∈ {60; 120; 180; 240; 300}
Suy ra a ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên a ⋮ 7 (2)
Từ (1) và (2) suy ra: a = 119
Vậy khối có 119 học sinh
gọi số cần tìm là a
=>a+1 là BC(1;2;3;4;5;6)
a chia hết cho 7
BC(1;2;3;4;5;6)={0;60;120;180;...}
a+\(\in\)1{0;60;120;180;..}
=>a\(\in\){-1;59;119;179;..}
mà chỉ có 119 chia hết cho 7 nên a =119
vậy số cần tìm là 119