Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Rút ngẫu nhiên 3 thẻ trong 15 thẻ có C 15 3 cách => n ( Ω ) = C 15 3 = 455 .
Gọi X là biến cố “ tổng ba số ghi trên ba thẻ rút được". Khi đó 1 ≤ x , y ≤ 15 x + y + z ⋮ 3
Từ số 1 đến số 15 gồm 5 số chia hết cho 3 (N1), 5 số chia hết cho 3 dư 1 (N2) và 5 số chia hết cho 3 dư 2 (N3).
TH1: 2 số x, y, z thuộc cùng 1 loại N1, N2 hoặc N3 => có C 5 3 + C 5 3 + C 5 3 = 30 cách.
TH2: 3 số x, y, z mỗi số thuộc 1 loại => có C 5 1 + C 5 1 + C 5 1 = 125 cách.
=> Số kết quả thuận lợi cho biến cố X là n(X) = 30 + 125 = 155.
Vậy P = n ( X ) n ( Ω ) = 31 91 .
Không gian mẫu: \(C_{25}^2\)
Trong 25 thẻ có 12 thẻ chẵn, chọn 2 thẻ từ 12 thẻ chẵn: \(C_{12}^2\) cách
Xác suất: \(P=\dfrac{C_{12}^2}{C_{25}^2}=...\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.
a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”
\( \Rightarrow A = C \cup D\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”
\( \Rightarrow B = C \cup E\)
Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách
Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách
\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.
b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.
Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.
Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.
Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.
a: Ω={1;2;3;...;25}
n(Ω)=25
b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6
P={4;8;12;16;20;24}
Q={6;12;18;24}
S={12;24}
Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu
a. Chia các số thành 3 tập hợp:
\(A=\left\{3;6;9;12;15;18\right\}\) gồm 6 số chia hết cho 3
\(B=\left\{1;4;7;10;13;16;19\right\}\) gồm 7 số chia 3 dư 1
\(C=\left\{2;5;8;11;14;17\right\}\) gồm 6 số chia 3 dư 2
Tổng 3 số là 1 số chia hết cho 3 khi (cả 3 số đều thuộc cùng 1 tập) hoặc (3 số thuộc 3 tập khác nhau)
Số cách thỏa mãn:
\(C_6^3+C_7^3+C_6^3+C_6^1.C_7^1.C_6^1=...\)
b.
Câu b chắc người ra đề hơi rảnh rỗi?
Chia thành các tập:
\(A_1=\left\{5;10;15\right\}\) gồm 3 số chia hết cho 5
\(B_1=\left\{1;6;11;16\right\}\) 4 số chia 5 dư 1
\(C_1=\left\{2;7;12;17\right\}\) 4 số chia 5 dư 2
\(D_1=\left\{3;8;13;18\right\}\) 4 số
\(E_1=\left\{4;9;14;19\right\}\) 4 số
Tổng 3 số chia hết cho 5 khi (3 số chia hết cho 5), (1 số chia hết cho 5, 1 số dư 1, 1 số dư 4), (1 chia hết, 1 dư 2, 1 dư 3), (2 dư 1, 1 dư 3), (1 dư 1, 2 dư 2), (1 dư 2, 2 dư 4), (2 dư 3, 1 dư 4)
Số cách:
\(C_3^3+C_3^1.C_4^1.C_4^1+C_3^1.C_4^1.C_4^1+4.C_4^2.C_4^1=...\)
\(n_{\Omega}=C_{25}^3=2300\)
A: "Những lượt lấy mà tổng các số ghi trên 3 thẻ chia hết cho 3"
Chia các thẻ thành 3 tập hợp:
M= {1;4;7;10;13;16;19;22;25} -> 8 phần tử (Chia 3 dư 1)
N= {2;5;8;11;14;17;20;23} -> 7 phần tử (Chia 3 dư 2)
P= {3;6;9;12;15;18;21;24} -> 8 phần tử (Chia hết cho 3)
TH1: Các thẻ lấy được nằm cùng tập số: \(n_{A1}=C_7^3+C_8^3.2=147\)
TH2: Các thẻ lấy được, mỗi tập số 1 thẻ: \(n_{A2}=3.7.8.8=1344\)
Em tính nA= nA1+ nA2 và tính xác suất là được ha