K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

a, Gọi T là biến cố "Trong 4 quả lấy ra có 3 quả cầu trắng".

\(\left|\Omega\right|=C^4_{15}\)

\(\left|\Omega_T\right|=C^3_7.C^1_8\)

\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^3_7.C^1_8}{C^4_{15}}=\dfrac{8}{39}\)

15 tháng 12 2021

b, Gọi P là biến cố "Có 4 quả cùng màu".

\(\left|\Omega\right|=C^4_{15}\)

\(\left|\Omega_P\right|=C^4_7+C^4_8\)

\(\Rightarrow P\left(P\right)=\dfrac{\left|\Omega_P\right|}{\left|\Omega\right|}=\dfrac{C^4_7+C^4_8}{C^4_{15}}=\dfrac{1}{13}\)

NV
23 tháng 1 2021

Không gian mẫu: \(C_{10}^3\)

a. Xác suất: \(\dfrac{C_4^2.C_6^1}{C_{10}^3}=...\)

b. \(P=\dfrac{C_4^2C_6^1+C_4^3}{C_{10}^3}=...\)

c. \(P=\dfrac{C_6^3}{C_{10}^3}=...\)

4 tháng 4 2017

undefined

19 tháng 11 2017

Không gian mẫu là kết quả việc chọn ngẫu nhiên 4 quả cầu từ hộp 10 quả cầu.

Giải bài 6 trang 76 sgk Đại số 11 | Để học tốt Toán 11

a. A: “ Bốn quả lấy ra cùng màu”

TH1: Bốn quả lấy ra cùng đen

Giải bài 6 trang 76 sgk Đại số 11 | Để học tốt Toán 11

TH2: Bốn quả lấy ra cùng trắng

Giải bài 6 trang 76 sgk Đại số 11 | Để học tốt Toán 11

b. B: “ Cả 4 quả lấy ra đều màu đen”

⇒ B: “ Có ít nhất 1 quả màu trắng”.

Giải bài 6 trang 76 sgk Đại số 11 | Để học tốt Toán 11

19 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Không gian mẫu là kết quả của việc lấy ngẫu nhiên 1 quả cầu ở hộp thứ nhất và một quả cầu ở hộp thứ hai

+ Có 10 cách lấy 1 quả cầu bất kì ở hộp 1 và có 10 cách lấy 1 quả cầu bất kì ở hộp 2. Nên số phần tử của không gian mẫu là;

⇒ n(Ω) = 10.10 = 100.

A: “ Quả cầu lấy từ hộp thứ nhất trắng”

⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 10 cách lấy quả cầu ở hộp B

⇒ n(A) = 6.10 = 60.

B: “Quả cầu lấy từ hộp thứ hai trắng”

⇒ Có 4 cách lấy quả cầu màu trắng ở hộp B và 10 cách lấy quả cầu ở hộp A

⇒ n(B) = 4.10 = 40.

A.B: “Cả hai quả cầu lấy ra đều trắng”

⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 4 cách lấy quả cầu màu trắng ở hộp B

⇒ n(A.B) = 6.4 = 24.

Giải bài tập Đại số 11 | Để học tốt Toán 11

hay P(A.B) = P(A).P(B)

⇒ A và B là biến cố độc lập.

 

b) Gọi C: “Hai quả cầu lấy ra cùng màu”.

Ta có: A : “Quả cầu lấy ra từ hộp thứ nhất màu đen”

B : “ Quả cầu lấy ra từ hộp thứ hai màu đen”

A.B : “Cả hai quả cầu lấy ra đều màu đen”

Nhận thấy A.B và A.B xung khắc (Vì không thể cùng lúc xảy ra hai trường hợp 2 quả cầu lấy ra cùng trắng và cùng đen)

Và C=(A.B)∪(A.B)

Giải bài tập Đại số 11 | Để học tốt Toán 11

c) C : “Hai quả cầu lấy ra khác màu”

⇒ P(C )=1-P(C)=1-0,48=0,52

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

-         Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega  \right) = C_9^2 = 36\)

-         Số cách lấy 2 quả khác màu là:

+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)

+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)

+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)

=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách

-         Số cách lấy 2 quả khác màu trùng số:

+ 2 quả cùng là số 1: \(C_3^2 = 3\)

+ 2 quả cùng là số 2: \(C_3^2 = 3\)

+ 2 quả cùng là số 3: \(C_2^2 = 1\)

=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách

=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)

=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)

Số cách chọn hai quả cầu cùng màu là:

\(5\cdot4+3\cdot2=26\left(cách\right)\)

Số quả cầu tất cả là 5+3=8(quả)

Xác suất để chọn hai quả cầu cùng màu là:

\(\dfrac{26}{8\cdot7}=\dfrac{13}{28}\)

1 tháng 12 2017

Đáp án D

Lấy ngẫu nhiên 2 quả cầu trong 5 quả cầu có

C 5 2 cách

Suy ra số phần tử của không gian mẫu là

Gọi X là biến cố “lấy được cả hai quả cầu trắng”

Lấy 2 quả cầu trắng trong 3 quả cầu trắng có C 3 2  cách

⇒ n ( X ) = C 3 2 = 3

Vậy xác suất cần tính là