Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi thời gian dự định là $a$ (giờ)
Theo bài ra ta có:
$AB=10a=10.1+(10+10)(a-1-1)$
$\Leftrightarrow 10a=10+20(a-2)$
$\Leftrightarrow a=3$ (giờ)
Độ dài quãng đường $AB$ là: $10a=10.3=30$ (km)
Gọi quãng đường AB là x ( x> 0 )
Theo bài ra ta có pt \(\dfrac{x}{50}=\dfrac{36}{60}+\dfrac{24}{60}+\dfrac{x}{60}\Rightarrow x=300\)(tm)
Vậy quãng đường AB dài 300 km
Bài 1:
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian dự định của ô tô để đi hết quãng đường AB là: \(\dfrac{x}{50}\left(h\right)\)
Thời gian thực tế của ô tô để đi hết quãng đường AB là:
\(2+\dfrac{1}{4}+\dfrac{x-112.5}{55}=\dfrac{x-112.5}{55}+\dfrac{9}{4}\)
Do đó, ta có phương trình:
\(\dfrac{x-112.5}{55}+\dfrac{9}{4}=\dfrac{x}{50}\)
\(\Leftrightarrow\dfrac{20\left(x-112.5\right)}{1100}+\dfrac{2475}{1100}=\dfrac{22x}{1100}\)
\(\Leftrightarrow20x-2250+2475-22x=0\)
\(\Leftrightarrow-2x+225=0\)
\(\Leftrightarrow x=\dfrac{225}{2}\left(nhận\right)\)
Vậy: \(AB=\dfrac{225}{2}km\)
Tính gì thế bạn?