Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(99^{100}:11=99.99^{99}:11=9^{99}.\left(99:11\right)=9.9^{99}\).
Vì vậy:
\(99^{100}:11=9.99^{99}=99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}\)\(>98^{99}+97^{99}+96^{99}+95^{99}+94^{99}+93^{99}+92^{99}+91^{11}\).
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
\(A=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+1^2\right)\)
\(=100^2+98^2+...+2^2-99^2-97^2-...-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=1\cdot\left(100+99\right)+1\cdot\left(98+97\right)+...+1\cdot\left(2+1\right)\)
\(=1\cdot\left(100+98+98+...+2+1\right)\)
\(=\dfrac{100\cdot\left(100+1\right)}{2}=5050\)
100 + 98 + 96 + 94 +.....+ 2 - 97 -95
= 100 + (98 - 97) + (96-95) + ........ + (2-1)
= 100 + 1 +1 +....... + 1
= 100 +1 . 49
= 149
\(M=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-...-\frac{1}{5.3}-\frac{1}{3.1}.\)
\(M=-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{93.95}+\frac{1}{95.97}+\frac{1}{97.99}\right)\)
\(M=-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{93}-\frac{1}{95}+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(M=-\frac{1}{2}.\left(1-\frac{1}{99}\right)=-\frac{1}{2}\cdot\frac{98}{99}=-\frac{49}{99}\)