K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dễ thấy \(\Delta AOB\)=\(\Delta BOC\)=\(\Delta COD\)=\(\Delta DOA\)

=>diện tích tam giác AOB=8:4=2cm

18 tháng 3 2020

Bạn thử tham khảo cách giải của mình nhé. 

a) Từ B hạ BI vuông góc với DC. => ABID là hình vuông => ID = IC = AB = \(\frac{CD}{2}\)

=> I là trung điểm DC => BI là đường cao mà BI đồng thời là đường trung tuyến

Do đó \(\Delta\)BCD cân tại B.

* Vì AB // DC (do ABCD là hình thang vuông) => \(\widehat{ABD}\)\(\widehat{BDI}\)\(45\)độ.

Mà \(\Delta\) BCD cân tại B => \(\widehat{BDI}\)\(\widehat{C}\)= 45 độ.

=> \(\widehat{DBC}\)= 90 độ. Vậy tam giác BCD vuông tại B.

b)  CD = 6 cm => AB = AB = \(\frac{CD}{2}\)\(\frac{6}{2}\)= 3 cm.

\(S_{ABCD}\)= (AB+CD) x AD : 2 = (3+6) x 3 : 2 = \(\frac{27}{2}\)= 13,5 (cm\(^2\))

12 tháng 4 2018

a)Xét tam giác BDC và tam giác HBC có :

\(\widehat{DBC}=\widehat{BHC}\left(=90^o\right)\)

Chung \(\widehat{BCD}\)

\(\Rightarrow\) Tam giác BDC đồng dạng với tam giác HBC ( g-g )

b) Do tam giác BDC đồng dạng với tam giác HBC

\(\Rightarrow\frac{DC}{BC}=\frac{BC}{HC}\)

\(\Leftrightarrow\frac{25}{15}=\frac{15}{HC}\)

\(\Leftrightarrow HC=9\left(cm\right)\)

Ta có : \(HD+HC=DC\)

\(\Leftrightarrow HD+9=25\)

\(\Leftrightarrow HD=16\left(cm\right)\)