Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng lần lượt là x và y(x>17; x>y)
VÌ chiều dài hơn chiều rộng 17m nên ta có PT: x-y=17 (1)
Nếu tăng chiều dài thêm 6m, giảm chiều rộng đi 5m thì diện tích mới kém diện tích cũ 100m2 nên ta có PT:
xy-(x+6)(y-5)=100
⇔xy-xy+5x-6y+30=100
⇔5x-6y=70 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x-y=17\\5x-6y=70\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=32\\y=15\end{matrix}\right.\) (TM)
Vậy chiều dài và chiều rộng lần lượt là 32m và 15m
Gọi chiều dài hình chữ nhật là x (m)
(ĐK: x ∈ N*)
Chiều rộng hình chữ nhật là x-17 (m)
Nếu tăng chiều dài 6m và giảm chiều rộng 5m thì diện tích mới kém diện tích cũ 100m2 nên ta có pt:
\(x\left(x-17\right)-\left(x+6\right)\left(x-22\right)=100\\ \Leftrightarrow x^2-17x-x^2+16x+132=100\\ \Leftrightarrow-x=-32\\ \Leftrightarrow x=32\left(tmđk\right)\)
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 32m và 15m
Gọi chiều dài và chiều rộng của hình chữ nhật là x(m) và y(m)
(ĐK: x > 15; x > y)
Chiều dài hơn chiều rộng 15m nên x - y = 15 (1)
Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới kém diện tích cũ 42m2 nên ta có pt:
xy - (x+4)(y-3) = 42
⇔ xy - xy + 3x - 4y + 12 = 42
⇔ 3x - 4y = 30 (2)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}x-y=15\\3x-4y=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-4y=60\\3x-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\\3\cdot30-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\left(tmđk\right)\\y=15\left(tmđk\right)\end{matrix}\right.\)
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 15m
Gọi x là chiều rộng của HCN (x>0) (m)
=> Chiều dài: 15+x (m)
Diện tích thực tế: x.(15+x) (m2)
Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới sẽ là: (x-3).(15+x+4)= (x-3).(19+x)
Vì diện tích giả sử kém diện tích cũ 42m2 nên ta có pt:
x.(15+x)= [(x-3).(19+x)]+42
<=>x2 +15x -x2 -16x= 42-57
<=> -x =-15
<=>x=15(TM)
Vậy chiều rộng HCN có độ dài 15m, chiều dài HCN có độ dài 30m.
gọi chiều rộng hcn là x
thì chiều dài hcn là x +10
diện tích ban đầu là x(x+10)
chiều rộng sau khi giảm là x - 3
chiều dài sau khi tăng là x + 10 +6
ta có:
( x - 3 ) ( x+10+6) = x(x+10) +12
=> x2 + 10x + 6x -3x - 30 - 18 = x2 + 10x +12
=> x2 - x2 + 10x +6x - 3x -10x = 12 +30 +18
=> 3x = 60
=> x = 20
vậy chiều rộng là 20m
=> chiều dài là : 20 +10 = 30m
Gọi: chiều dài ban đầu : 3a (m) , chiều rộng ban đầu : a (m)
Nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng 20m :
( 3a - 5 ) - ( a+ 3 ) = 20
=> a = 14
Diện tích thửa ruộng :
S = 14 x 3 x 14 = 588 (m2)
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chiều dài gấp ba lần chiều rộng nên ta có phương trình: a=3b(1)
Vì khi tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng là 20m nên ta có phương trình:
\(\left(a-5\right)-\left(b+3\right)=20\)
\(\Leftrightarrow a-5-b-3-20=0\)
\(\Leftrightarrow a-b-28=0\)
\(\Leftrightarrow a-b=28\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a=3b\\a-b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-3b=0\\a-b=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2b=-28\\a-3b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=14\\a=3\cdot14=42\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài và chiều rộng của thửa ruộng lần lượt là 42m và 14m
Diện tích thửa ruộng là: \(42\cdot14=588\left(m^2\right)\)
Gọi chiều dài thửa ruộng là \(x( m) (x>5)\)
Gọi chiều rộng thửa ruongj là \(y ( m) (y >0)\)
Theo điều kiện đầu ta có phương trình \(x - 3y =0\)(1)
Theo điều kiện sau ta có phương trình \((x-5)-(y+3) =20 \)
⇒ \(x-5-y-3=20\)
⇔\(x-y=28\)(2)
Từ 1 và 2 ta có hệ \(\left\{{}\begin{matrix}x-3y=0\\x-y=28\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=42\left(tm\right)\\y=14\left(tm\right)\end{matrix}\right.\)
⇒ Diện tích thửa ruộng là 14.42=588(m2 )
Gọi chiều rộng là x
=>Chiều dài là x+4
Theo đề, ta có: (x+4-4)(x+2)=x(x+4)-16
=>x(x+2)-x(x+4)=-16
=>x^2+2x-x^2-4x=-16
=>-2x=-16
=>x=8
=>Chiều dài là 12m
Gọi chiêu dài, chiều rộng lần lượtlà a,b
Theo đề, ta có: ab=720 và (a+6)(b-4)=ab
=>ab=720 và ab-4a+6b-24=ab
=>-4a+6b=24 và ab=720
=>2a-3b=-12 và ab=720
=>3b=2a+12
=>b=(2a+12)/3
ab=720
=>a*(2a+12)/3=720
=>(2a^2+12a)=2160
=>a=30
=>b=24
Gọi chiều dài và chiều rộng lần lượt là $a,b(m)(a,b>0)$
$\to a-b=20(1)$
Diện tích hình chữ nhật là $ab$
Nếu tăng chiều dài thêm 6m, giảm chiều rộng đi 4m thì diện tích mới kém diện tích cũ `84m^2` nên ta có pt
$(a+6)(b-4)=ab-84$
$\to ab-4a+6b-64=ab-84$
$\to 4a-6b=20$
$\to 2a-3b=10(2)$
Từ (1),(2) ta có HPT:
$\begin{cases}a-b=10\\2a-3b=10\\\end{cases}$
$\to \begin{cases}2a-2b=20\\2a-3b=10\\\end{cases}$
$\to \begin{cases}b=10\\a=20\\\end{cases}$
Vậy chiều dài và chiều rộng lần lượt là 20 và 10m.