K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
31 tháng 1 2017
Thể tích hình chóp đều bằng: V = 1/3 S.h = 1/3.100.12 = 400 ( c m 3 )
CM
11 tháng 1 2017
Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:
+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )
Do đó:
+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).
+ Diện tích toàn phần của hình chóp đều là
Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )
+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )
Gọi O là tâm của hình vuông đáy.
Kẻ SK ⊥ BC, ta có: KB = KC
Vì SO ⊥ (ABCD) nên SO ⊥ OK
Trong tam giác SOK ta có:
∠(SOK) = 90 o
OK = 12; AB = 5cm
Áp dụng định lí Pi-ta-go vào tam giác vuông SOK, ta có:
S K 2 = S O 2 + O K 2 = 12 2 + 5 2 =169
Suy ra: SK = 13 (cm)
Diện tích xung quanh hình chóp đều: S = (2.10).13 = 260 ( c m 2 )
Diện tích mặt đáy: S = 10.10 = 100( c m 2 )
Diện tích toàn phần hình chóp đều : S T P = S x q + S đ á y = 260 + 100 = 360 ( c m 2 )