Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là số kilomet mà hành khách di chuyển \((x \ge 0)\)
a)
i) Khi đã lên taxi 4 chỗ, hành khách luôn phải trả 11 000 đồng dù đi hay không, do đó số tiền phải trả luôn bao gồm 11 000 đồng này.
Nếu \(0 \le x \le 0,5\), số tiền phải trả là 11 000 đồng
Nếu \(0,5 < x \le 30\) thì số tiền phải trả là \(11000 + 14500.(x - 0,5)\) hay \(3750 + 14500x\) (đồng).
Nếu \(x > 30\) thì số tiền phải trả là \(11000 + 14500.(30 - 0,5) + 11600.(x - 30)\) hay \(90750 + 11600x\) (đồng).
Vậy hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}11000\quad \quad \quad \quad \quad \quad \;0 \le x \le 0,5\quad \\3750 + 14500x\quad \quad \quad 0,5 < x \le 30\end{array}\\{90750 + 11600x\quad \quad \;x > 30}\end{array}} \right.\quad \)
ii)
Khi đã lên taxi 7 chỗ, hành khách luôn phải trả 11 000 đồng dù đi hay không, do đó số tiền phải trả luôn bao gồm 11 000 đồng này.
Nếu \(0 \le x \le 0,5\), số tiền phải trả là 11 000 đồng
Nếu \(0,5 < x \le 30\) thì số tiền phải trả là \(11000 + 15500.(x - 0,5)\) hay \(3250 + 15500x\) (đồng).
Nếu \(x > 30\) thì số tiền phải trả là \(11000 + 15500.(30 - 0,5) + 13600.(x - 30)\) hay \(60250 + 13600x\) (đồng).
Vậy hàm số \(g(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}11000\quad \quad \quad \quad \quad \quad \;0 \le x \le 0,5\quad \\3250 + 15500x\quad \quad \quad 0,5 < x \le 30\end{array}\\{60250 + 13600x\quad \quad \;x > 30}\end{array}} \right.\quad \)
b)
Nếu đặt toàn bộ xe 4 chỗ cho 30 hành khách thì cần 8 xe. Khi đó số tiền phải trả là:
\({f_1}(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}8.11000\quad \quad \quad \quad \quad \quad \;\;\;0 \le x \le 0,5\quad \\8.(3750 + 14500x)\quad \quad \quad 0,5 < x \le 30\end{array}\\{8.(90750 + 11600x)\;\quad \quad \;x > 30}\end{array}} \right.\quad \)
Nếu đặt toàn bộ xe 7 chỗ cho 30 hành khách thì cần 5 xe. Khi đó số tiền phải trả là:
\({g_1}(x) = \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}5.11000\quad \quad \quad \quad \;\;\quad \quad \;0 \le x \le 0,5\quad \\5.(3250 + 15500x)\quad \quad \quad 0,5 < x \le 30\end{array}\\{5.(60250 + 13600x)\quad \quad \;\;x > 30}\end{array}} \right.\quad \)
So sánh số tiền dựa theo số kilomet di chuyển:
+) Nếu \(0 \le x \le 0,5\)
\(\begin{array}{l}{f_1}(x) = 8.11000;\;{g_1}(x) = 5.11000\\ \Rightarrow {f_1}(x) > {g_1}(x)\end{array}\)
Vậy khi 30 người di chuyển quảng đường ít hơn hoặc bằng 0,5km thì đi xe 7 chỗ sẽ tốn ít tiền hơn.
+) Nếu \(0,5 < x \le 30\)
\(\begin{array}{l}{f_1}(x) = 8.(3750 + 14500x);\;{g_1}(x) = 5.(3250 + 15500x)\\ \Rightarrow {f_1}(x) - {g_1}(x) = 8.(3750 + 14500x) - 5.(3250 + 15500x)\\ = 13750 + 38500x\end{array}\)
Vì \(x > 0\) nên \({f_1}(x) - {g_1}(x) > 0\) hay \({f_1}(x) > {g_1}(x)\)
Vậy khi 30 người di chuyển quảng đường trên 0,5km đến 30km thì đi xe 7 chỗ sẽ tốn ít tiền hơn.
+) Nếu \(x > 30\)
\(\begin{array}{l}{f_1}(x) = 8.(90750 + 11600x);\;{g_1}(x) = 5.(60250 + 13600x)\\ \Rightarrow {f_1}(x) - {g_1}(x) = 8.(90750 + 11600x) - 5.(60250 + 13600x)\\ = 424750 + 24800x\end{array}\)
Vì \(x > 0\) nên \({f_1}(x) - {g_1}(x) > 0\) hay \({f_1}(x) > {g_1}(x)\)
Vậy khi 30 người di chuyển quảng đường trên 30km thì đi xe 7 chỗ sẽ tốn ít tiền hơn.
Kết luận: Nên đặt toàn bộ xe 7 chỗ thì có lợi hơn.
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình:
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được:
3 x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7 x + 4 y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được:
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
TRẢ LỜI:
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Gọi x,y,z là số đồng tiền các loại mệnh giá 2000 đồng, 1000 đồng và 500 đồng. (\(\left(x,y,z\in N^{\circledast}\right)\).
Theo giả thiết ta có: \(x+y+z=1450\) (đồng).
Do tổng số tiền cần đổi là 1 500 000 đồng nên:
\(2000x+1000y+500z=1500000\)
Do số tiền xu loại 1 000 đồng bằng hai lần hiệu của số tiền xu loại 500 đồng với số tiền xu loại 2000 đồng nên:\(y=2\left(z-x\right)\)
Vậy ta có hệ:
\(\left\{{}\begin{matrix}x+y+z=1450\\2000x+1000y+500z=1500000\\y=2\left(z-x\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=350\\y=500\\z=600\end{matrix}\right.\)
vậy số tiền loại 2000 đồng là 350 tờ; số tiền loại 1000 đồng là 500 tờ; số tiền loại 600 đồng là 600 tờ.