Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cái định lý cos thiếu kìa
AC^2=AB^2+BC^2-2.AB.BC.cosABC
AC^2=6^2+4^2-2.6.4.cos120=76
=>AC= căn bậc 2 của 76 = 2 căn bậc 2 19

Để giải bài toán này, chúng ta cần tính khoảng cách giữa hai đầu kim đồng hồ tại thời điểm 14:00. Khi đó, kim giờ chỉ vào số 2 (tương ứng với 14:00), và kim phút chỉ vào số 12 (tức là 0 phút).
Bước 1: Tính góc giữa hai kim
- Kim phút: Kim phút lúc 14:00 chỉ vào số 12, tức là trên trục dọc (0 độ).
- Kim giờ: Kim giờ lúc 14:00 chỉ vào số 2, tức là góc giữa kim giờ và trục dọc là \(2 \times 30^{\circ} = 60^{\circ}\) (mỗi số trên mặt đồng hồ tương ứng với 30 độ, và số 2 cách số 12 đúng 2 số, nên 60 độ).
Góc giữa hai kim sẽ là \(60^{\circ}\).
Bước 2: Tính khoảng cách giữa hai đầu kim
- Độ dài của kim phút là 3 cm và độ dài của kim giờ là 2 cm.
- Áp dụng công thức tính khoảng cách giữa hai điểm trên một vòng tròn có bán kính khác nhau:
\(d = \sqrt{r_{1}^{2} + r_{2}^{2} - 2 r_{1} r_{2} cos \left(\right. \theta \left.\right)}\)
Trong đó:
- \(r_{1} = 3 \textrm{ } \text{cm}\) (độ dài kim phút)
- \(r_{2} = 2 \textrm{ } \text{cm}\) (độ dài kim giờ)
- \(\theta = 60^{\circ}\) (góc giữa hai kim)
Bước 3: Tính giá trị
Chuyển đổi góc \(\theta\) sang radian: \(\theta = 60^{\circ} = \frac{\pi}{3}\) radian.
Áp dụng công thức:
\(d = \sqrt{3^{2} + 2^{2} - 2 \times 3 \times 2 \times cos \left(\right. \frac{\pi}{3} \left.\right)}\)\(d = \sqrt{9 + 4 - 2 \times 3 \times 2 \times \frac{1}{2}}\)\(d = \sqrt{9 + 4 - 6} = \sqrt{7}\)\(d \approx 2.65 \textrm{ } \text{cm}\)
Kết quả:
Khoảng cách giữa hai đầu kim đồng hồ lúc 14:00 là khoảng 2.65 cm.

Độ dài cung tạo bởi mũi kim giờ và kim phút lúc đồng hồ chỉ điểm 5 giờ là:
\(\dfrac{5}{12}\times30=12,5\left(cm\right)\)
(Nếu khó quá em vặn đồng hồ về nhà mình xem thử hè)