Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T=0.1
t2=t1+0.025=t1+T/4-->\(x_1^2+x_2^2=A^2\)-->x22=12
ma tai t1 dong giam va t2=t1+T/4 --->X2=-2\(\sqrt{3}\)
Sử dụng đường tròn
Từ thời điểm 0-0.01 s thì góc quay được là \(\varphi = 0.01.\omega = \pi (rad).\)
I 0 π/3 t=0 M N I 0 2 I 0 2 - t=0.01 P Q t 1 t 2 π/6 φ1 φ2
Thời điểm t =0 ứng với điểm M; thời điểm t = 0.01s ứng với điểm N. Từ M đến N sẽ qua hai điểm P và Q có giá trị (độ lớn) 0.5I0.
tại P: \(\varphi_1 = t_1 \omega => t_1 = \frac{\pi/3}{100\pi} = \frac{1}{300}s\)
tại Q: \(\varphi_2 = t_2 \omega => t_2 = \frac{\pi/3+\pi/6+\pi/6}{100\pi} = \frac{2}{300}s\)
chọn đáp án. A
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
Sau khoảng thời gian ngắn nhất \(0,25 \mu s\) năng lượng điện trường và năng lượng từ trường => \(\frac{T}{4}= 0,25 \mu s=> T = 10^{-6}s=> \omega = \frac{2\pi}{T}= 2\pi.10^{6}(rad/s).\)
\(q_0 = \frac{I_0}{\omega} = \frac{2.10^{-8}}{\pi}C.\)
\(W_L=W_C = \frac{0,8}{\pi}.10^{-6}=> q = \pm \frac{q_0}{\sqrt{2}}.\)
Ta có: \(\frac{1}{2}\frac{q_0^2}{2C}=\frac{0,8}{\pi}.10^{-6}=> C = \frac{1,25.10^{-10}}{\pi}F = \frac{125}{\pi}pF.\)
bạn giải đúng rồi nhưng mà đoạn cuối công thức là (1/2)*(q02/C) chứ ko phải là 2C. đáp án là D
Tần số góc: \(\omega=2\pi f=120\pi\)(rad/s)
Số chỉ ampe kế là giá trị hiệu dụng
\(\Rightarrow I=4,6A\)
\(\Rightarrow I_0=I\sqrt{2}=4,6\sqrt{2}=6,5A\)
Gốc thời gian t = 0 sao cho dòng điện có giá trị lớn nhất \(\Rightarrow\varphi=0\)
Vậy \(i=6,5\cos120\pi t\)(A)
Bạn hãy tham khảo một bài tương tự như vậy ở đây nhé: Hỏi đáp - Trao đổi kiến thức Toán - Vật Lý - Hóa Học - Sinh Học - Học và thi online với HOC24
\(Z_C=\frac{1}{\omega C}=200\Omega\)
\(I_0=\frac{U_0}{Z_C}=\frac{100}{200}=0,5\)
Mạch điện chỉ có tụ C nên dòng điện sớm pha \(\frac{\pi}{2}\) so với u
\(\Rightarrow\varphi_i=\varphi_u+\frac{\pi}{2}=0\)
Vậy \(i=0,5\cos\left(100\pi t\right)\left(A\right)\)
\(C = \frac{1}{\omega^2.L}= 5.10^{-6}F.\)
\(U_0 = \frac{q_0}{C}= \frac{I_0}{C.\omega}= \frac{I_0.\sqrt{L}}{\sqrt{C}} = 8V.\)
\(i = I = \frac{I_0}{\sqrt{2}}. \)
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
=> \(\left(\frac{u}{U_0}\right)^2 = 1- \left(\frac{i}{I_0}\right)^2 = 1 - \frac{1}{2}= \frac{1}{2}\)
=> \(u = \frac{1}{\sqrt{2}}U_0= 4\sqrt{2}V.\)
Ban đầu (t=0) dòng điện có giá trị cực đại. Để dòng điện giảm về 0 thì mất thời gian T/4
Suy ra T/4 = 0,004
⇒ T = 0,016s
Tần số f = 1/T = 62,5Hz
Chọn A.