Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
\(P=UI\cos\varphi\)
=> \(I=\frac{P}{U\cos\varphi}=\frac{P_i+I^2r}{U\cos\varphi}=\frac{80+I^2.32}{220.0.8}\)
=> phương trình bậc 2 của I và bấm máy tính
\(I_1=5\)(loại vì hiệu suất \(H=\frac{80}{UI\cos\varphi}=9,09\%\))
hoặc \(I_2=0.5\) (chọn)
=> \(I_0=I\sqrt{2}=0,5\sqrt{2}A.\)
chọn đáp án D.
Bạn tham khảo một bài tương tự ở đây nhé.
Câu hỏi của trần thị phương thảo - Học và thi online với HOC24
Áp dụng: \(P=\dfrac{U^2}{R}\cos^2\varphi\)
\(\Rightarrow 160=\dfrac{U^2}{R}.0,4^2\) (1)
\(340=\dfrac{U^2}{R}.\cos^2\varphi\) (2)
Lấy (1) chia (2) vế với vế ta tìm đc \(\cos\varphi = 0,6\)
\(P_1=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_1\)
\(P_2=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_2\)
\(cos\varphi_2=0,6\)
đáp án B
Vì có điện trở thuần nên dao động trong mạch tắt dần do tỏa nhiệt ở điện trở. Để duy trì dao động điều hòa phải bổ sung cho mạch một năng lượng có công suất đủ bì vào phần năng lượng hao phí do tỏa nhiệt (hiệu ứng J un) trên điện trở, phần này có công suất là: \(\Delta P=I^2.R\)
Khi cùng cấp năng lượng đó, ta có: \(\frac{1}{2}CU^2_0=\frac{1}{2}LI^2_0\)
Mà: \(^{U=\frac{U_0}{\sqrt{2}}}_{I=I_{\frac{0}{\sqrt{2}}}}\)} \(\rightarrow I^2=\frac{C}{L}.U^2\)
\(P=I^2R=\frac{CR}{L}U^2=\frac{CRU^2_0}{2L}\)
\(\Rightarrow P=137\mu W\)
chọn B
Ta có:
Trong 1 (s) ứng với 50 chu kì mà mỗi chu kì có độ lớn 1 (A) 4 lần
⇒ 50 chu lì có 50.4 = 200 (lần)
T=1f=0,02T=1f=0,02
t =1s = 50T
trị tuyệt đối = 1 -- I = 1 và I = -1
--> có 200 lần
Vecto của hiệu điện thế hai đầu mạch bằng tổng hai vecto hiệu điện thế của động cơ điện và cuộn dây
Vẽ giản đồ vecto ta có thể tổng hợp và tính độ lớn của hiệu điện thế hai đầu mạch
Dùng phép chiếu tính các giá trị theo thành phần thẳng đứng và nằm ngang
\(U_x=U\cos15+2U\cos75\)
\(U_y=U\sin15+2U\sin75\)
\(U=\sqrt{U^2_x+U^2_y}=U\sqrt{7}\)
Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)
\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)
Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)
A đúng
Giải thích: Đáp án C
Hiệu suất động cơ: