Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Z_L=L\omega=\frac{25.10^{-2}}{\pi}.100\pi=25\Omega.\)
Mach co r, R va ZL khi đó \(Z=\sqrt{\left(R+r\right)^2+Z_L^2}=\sqrt{\left(10+15\right)^2+25^2}=25\sqrt{2}\Omega.\)
Cường độ dòng điện cực đại \(I_0=\frac{U_0}{Z}=\frac{100\sqrt{2}}{25\sqrt{2}}=4A.\)
Độ lệch pha giữa u và i được xác định thông qua \(\tan\varphi=\frac{Z_L}{R+r}=\frac{25}{15+10}=1\)\(\Rightarrow\varphi=\frac{\pi}{4}.\)
hay \(\varphi_u-\varphi_i=\frac{\pi}{4}.\) mà \(\varphi_u=0\Rightarrow\varphi_i=-\frac{\pi}{4}.\)
=> phương trình dao động của cường độ dòng xoay chiều là
\(i=4\cos\left(100\pi t-\frac{\pi}{4}\right)A.\)
Điện áp hiệu dụng: \(U=\dfrac{U_0}{\sqrt 2}=60\sqrt 2(V)\)
Điện áp hiệu dụng 2 đầu điện trở là: \(U_R=\sqrt{U^2-U_L^2}=60(V)\)
Cường độ dòng điện hiệu dụng: \(I=\dfrac{U_R}{R}=2A\)
Độ lệch pha giữa u và i: \(\tan\varphi=\dfrac{U_L}{U_R}=1\) \(\Rightarrow \varphi_{u/i}=\dfrac{\pi}{4}\)
Vậy cường độ dòng điện tức thời là: \(i=2\sqrt 2\cos(100\pi t + \dfrac{\pi}{3} - \dfrac{\pi}{4})\)
\(\Rightarrow i=2\sqrt 2\cos(100\pi t - \dfrac{\pi}{12})A\)
Đáp án C.
lúc đầu ta có :
UMB=2UR => ZMB=2R <=> ZC=\(\sqrt{3}\)R mà C=\(\frac{L}{R^2}\) => ZL=\(\frac{R}{\sqrt{3}}\)
lúc sau ta có Uc' max :
Zc'.ZL=R2+ \(Z^2_L\) => Zc'=\(\frac{4R}{\sqrt{3}}\)
\(\text{tanφ}=\frac{Z_L-Z_C}{R}\Rightarrow\tan\varphi=-\sqrt{3}\Rightarrow\varphi=-\frac{\pi}{3}\)
Chia thành hai bài toán nhỏ
Bài 1, $R$ thay đổi để $U_{RL}$ không đổi, bài này quen thuộc rồi, ta được : $Z_{C_1}=2Z_L=400 \Omega$
Bài toán 2: $C$ thay đổi để $I_{max}$ là cộng hưởng thì $Z_C=Z_L=200 \Omega$
Vậy cần tăng tụ C thêm $\dfrac{10^{-4}}{4\pi}F$
\(\varphi=\varphi_u-\varphi_i=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}\)
\(\tan\varphi=\frac{Z_L-Z_C}{R}=1\Rightarrow Z_L-Z_C=R\)
\(\Rightarrow Z=\sqrt{R^2+\left(Z_L-Z_C\right)^2}=R\sqrt{2}\)
Mà \(Z=\frac{U}{I}=\frac{200}{2}=100\Rightarrow R=\frac{100}{\sqrt{2}}=50\sqrt{2}\)