Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Véc tơ lực tác dụng của điện tích q 1 l ê n q 2 có phương chiều như hình vẽ:
Có độ lớn: F 12 = k . | q 1 . q 2 | A B 2 = 9.10 9 .16.10 − 6 .4.10 − 6 0 , 3 2 = 6 , 4 ( N ) .
b) Các điện tích q 1 v à q 2 gây ra tại C các véc tơ cường độ điện trường E 1 → và E 2 → có phương chiều như hình vẽ:
Có độ lớn: E 1 = k | q 1 | A C 2 = 9.10 9 .16.10 − 6 0 , 4 2 = 9 . 10 5 ( V / m ) ;
E 2 = k | q 2 | B C 2 = 9.10 9 .4.10 − 6 0 , 1 2 = 36 . 10 5 ( V / m ) ;
Cường độ điện trường tổng hợp tại C là:
E → = E 1 → + E 2 → có phương chiều như hình vẽ, có độ lớn:
E = E 1 + E 2 = 9 . 10 5 + 36 . 10 5 - 45 . 10 5 ( V / m ) .
c) Gọi E 1 → và E 2 → là cường độ điện trường do q 1 v à q 2 gây ra tại M thì cường độ điện trường tổng hợp do q 1 v à q 2 gây ra tại M là: E → = E 1 → + E 2 → = 0 → ð E 1 → = - E 2 → ð E 1 → và E 2 → phải cùng phương, ngược chiều và bằng nhau về độ lớn. Để thỏa mãn các điều kiện đó thì M phải nằm trên đường thẳng nối A, B; nằm trong đoạn thẳng AB (như hình vẽ).
Với E 1 ' = E 2 ' ⇒ 9 . 10 9 . | q 1 | A M 2 = 9 . 10 9 . | q 2 | ( A B − A M ) 2
⇒ A M A B − A M = | q 1 | | q 2 | = 2 ⇒ A M = 2. A B 3 = 2.30 3 = 20 ( c m ) .
Vậy M nằm cách A 20 cm và cách B 10 cm.
Đáp án: A
Để cường độ điện trường tại M bằng 0 thì hai vecto E 1 do q1 gây ra và E 2 do q2 gây ra phải ngược chiều và cùng độ lớn nên M nằm trên đường thẳng AB và ngoài đoạn AB
Do |q2| > |q1| nên r1 < r2 => r1 = r2 - AB,
=> và r1 = 10 cm
Vì các điện tích q 1 , q 2 nằm cân bằng, hợp lực của các lực điện tác dụng lên mỗi điện tích bằng không. Điều đó có nghĩa là cường độ điện trường tổng hợp tại các điểm A, B và C bằng không : E A = 0; E B = 0; E C = 0
Cường độ điện trường bằng 0 khi:
\(\overrightarrow {{E_1}} + \overrightarrow {{E_2}} = \overrightarrow {{E_3}} = \overrightarrow 0 \Rightarrow \overrightarrow {{E_1}} = - \overrightarrow {{E_2}} \)
\( \Rightarrow \left\{ \begin{array}{l}{E_1} \uparrow \downarrow {E_2}\\{E_1} = {E_2}\end{array} \right.\)
Vì |q1| > |q2| ⇒ Điểm đó thuộc đường thẳng AB và ngoài đoạn AB, gần B hơn (r1>r2)
\( \Rightarrow \left\{ \begin{array}{l}{r_1} - {r_2} = AB\\\frac{{r_1^2}}{{r_2^2}} = \frac{{\left| {{q_1}} \right|}}{{\left| {{q_2}} \right|}}\end{array} \right. \Rightarrow {r_1} = 0,071m;{r_2} = 0,041m\)
Vậy điểm cần tìm cách A 7,1 cm và cách B 4,1 cm.