Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi câu hỏi bạn nên hỏi 1 bài thôi nhé.
Bài 1:
Áp dụng công thức độc lập thời gian: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow A^2= 2^2+\dfrac{(4\pi\sqrt 3)^2}{\omega^2}=3^2+\dfrac{(2\pi\sqrt 7)^2}{\omega^2}\)
\(\Rightarrow \omega=2\pi\) (rad/s)
Và \(A=4\) (cm)
Tìm pha ban đầu \(\varphi\) bằng cách: \(\cos(\varphi)=\dfrac{x_1}{A}=\dfrac{1}{2}\)
Ban đầu vật đi theo chiều dương \(\rightarrow \varphi <0\)
\(\Rightarrow \varphi=-\dfrac{\pi}{3}\)
Vậy PT: \(x=4\cos(2\pi t-\dfrac{\pi}{3})\) (cm)
b)
Biểu diễn dao động của vật bằng véc tơ quay như hình vẽ
Thời điểm đầu tiên vật qua x1 theo chiều âm ứng với véc tơ quay từ M đến N
Góc quay \(\alpha =60.2=120^0\)
Thời gian: \(i=\dfrac{120}{360}T=\dfrac{1}{3}s\)
Bài 2:
O chính là vị trí cân bằng với 2 biên là M, N
Thời gian vật đi từ O đến M là T/4
\(\Rightarrow T/4=6\Rightarrow T =24s\)
Biểu diễn dao động điều hoà bằng véc tơ quay ta có:
Vật đi từ O đến trung điểm I của ON ứng với véc tơ quay từ P đến Q
Góc quay: \(\alpha =30^0\)
Thời gian: \(t=\dfrac{30}{360}T=\dfrac{1}{12}.24=2(s)\)
Đáp án D
Thời gian ngắn nhất để vật đi từ vị trí có li độ x = - A 3 2 = - 6 c m đến vị trí có li độ
1. Chu kì dao động: T = 4.0,2=0,8s
2. Chu kì T = 2.0,1 = 0,2s
3. \(a=-\omega^2.x\Rightarrow \omega=\sqrt{|\dfrac{a}{x}|}=\sqrt{\dfrac{80}{2}}=2\pi(rad/s)\)
\(\Rightarrow T = 1s\)
Chọn đáp án A.
ω = k m = 100 0 , 1 = 10 10 ( r a d / s ) .
Mà A = 2 (cm) => v 0 = ω . A = 10 2 c m / s .
a 0 = ω 2 . A = 1000 2 c m / s 2
v v 0 2 + a a 0 2 = 1 ⇒ 10 10 10 20 2 + a 1000 2 2 = 1
⇒ a = 1000 ( c m / s 2 ) = 10 m / s 2 .
Vật đi từ -2cm đến 2cm ứng với véc tơ quay từ M đến N.
Góc quay: \(\alpha=2.30^0=60^0\)
Thời gian: \(t=\dfrac{60}{360}T=\dfrac{1}{6}.\dfrac{2\pi}{10\pi}=\dfrac{1}{30}s\)
Quãng đường: \(S=2+2=4cm\)
Tốc độ trung bình: \(v_{TB}=\dfrac{S}{t}=\dfrac{4}{\dfrac{1}{30}}=120(cm/s)\)