K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi x(m) là chiều rộng đám đất(Điều kiện: x>0)

Chiều dài đám đất là: x+15(m)

Vì diện tích của đám đất là 2700m2 nên ta có phương trình:

x(x+15)=2700

\(\Leftrightarrow x^2+15x-2700=0\)

\(\Delta=15^2-4\cdot1\cdot\left(-2700\right)=11025>0\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-15-105}{2\cdot1}=\dfrac{-120}{2}=-60\left(loại\right)\\x_2=\dfrac{-15+105}{2\cdot1}=\dfrac{90}{2}=45\left(nhận\right)\end{matrix}\right.\)

Vậy: Chiều rộng của đám đất là 45m

Chiều dài của đám đất là: 45+15=60(m)

Chu vi của đám đất là:

\(\left(45+60\right)\cdot2=105\cdot2=210\left(m\right)\)

23 tháng 3 2021

gọi x là chiều rộng của mảnh đất (x>0,m)

-chiều dài mảnh đất là x+15(m)

-Diện tích mảnh đất là 

x(x+15)=2700⇔x2+15x-2700⇔x1=45

                                                  x2=-60(loại)

-chu vi mảnh đất là 

(45+45+15)*2=210m

21 tháng 1 2018

Gọi a và b lần lượt là chiều dài và chiều rộng

Chu vi là

( a + b) x 2   (1)

Khi tăng hiều dài 5m và tăng chiều rộng 3m thì diện tích sẽ tăng 225m2

 ( a + 5 ) * ( b + 3 ) - ab = 225 (2)

Từ (1) (2) ta lập đc hệ pt sau

\(\hept{\begin{cases}\left(a+b\right)\cdot2=124\\\left(a+5\right)\left(b+3\right)-ab=225\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+2b=124\\3a+5b=210\end{cases}}\Leftrightarrow\hept{\begin{cases}a=50\\b=12\end{cases}}\)

Vậy chiều dài là 50 cm 

Chiều rộng là 12 cm 

cho mik hoi phan a+5 b=3 - ab =225 ma sao bien doi dc 3a+5b=210 vay a

 

6 tháng 2 2020

Gọi chiều dài của mảnh đất đó là x ( m; x > 20 ) và chiều rộng của mảnh đất là y ( m; x>y>0 ).

- Theo bài ra, ta có hệ pt:

\(\hept{\begin{cases}x-y=20\\xy=125\end{cases}}\)<=> \(\hept{\begin{cases}x=20+y\\\left(y+20\right)y=125\end{cases}}\)

<=>\(\hept{\begin{cases}x=20+y\\y^2+20y=125\end{cases}}\) <=> \(\hept{\begin{cases}x=20+y\\y^2+20y-125=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=20+y\\\left(y+25\right)\left(y-5\right)=0\end{cases}}\) <=> \(\hept{\begin{cases}x=20+y\\y=-25hoacy=5\end{cases}}\)

<=>\(\hept{\begin{cases}x=20+y\\y=5\end{cases}}\)( vì y > 0 )    <=>\(\hept{\begin{cases}x=25\\y=5\end{cases}}\)(TM)

Vậy CD của mảnh đất là 25m , CR của mảnh đất là 5m.

- Năm nay em mới lớp 8 nên chỗ nào chưa được mong chị thông cảm cho em nhé!

20 tháng 2 2019

Này cậu :)))))

Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m ) 

( 40 < x < 80 ; 0 < y < 40 )

Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )

Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\)  ( 2 )

Từ ( 1 ) và ( 2 ) ta có hệ phương trình:

\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )

Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P

22 tháng 4 2021

undefined

Bài 11: 

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 90m nên ta có phương trình:

\(2\cdot\left(x+y\right)=90\)

\(\Leftrightarrow x+y=45\)(1)

Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)

Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:

\(\left(x-5\right)\left(y-2\right)=xy-140\)

\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)

\(\Leftrightarrow-2x-5y+150=0\)

\(\Leftrightarrow-2x-5y=-150\)

\(\Leftrightarrow2x+5y=150\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)

Diện tích mảnh đất là:

\(x\cdot y=25\cdot20=500\left(m^2\right)\)

Vậy: Diện tích mảnh đất là 500m2

Bài 12:

Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))

Vì chu vi của mảnh đất là 80m nên ta có phương trình:

\(2\cdot\left(x+y\right)=80\)

\(\Leftrightarrow x+y=40\)(3)

Diện tích ban đầu của mảnh đất là:

\(xy\left(m^2\right)\)

Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:

\(\left(x+3\right)\left(y+5\right)=xy+195\)

\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)

\(\Leftrightarrow5x+3y-180=0\)

\(\Leftrightarrow5x+3y=180\)(4)

Từ (3) và (4) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài của mảnh đất là 30m

Chiều rộng của mảnh đất là 10m