Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Trước hết ta có kết quả: Khối tứ diện ABCD có thể tích được tính theo công thức
Áp dụng kết quả này, ta có
= 6h
trong đó MN = PQ = 6 dm và h = d(MN;PQ) là chiều cao của hình trụ.
Từ giả thiết ta có h = 5 dm
Suy ra thể tích khối trụ là , với r = 3 dm
Do đó thể tích của lượng đá bị cắt bỏ là
Vậy phương án đúng là B.
Phân tích phương án nhiễu.
Phương án A và C: Sai do HS giải đúng nhưng làm tròn số bị sai hoặc lấy
Phương án D: Sai do HS chọn π = 3,141
Đáp án C
Tứ diện ABCD có chiểu cao không đổi do đó thể tích nhỏ nhất khi diện tích tam giác ABC nhỏ nhất. Vì AB, BC, CA lần lượt tiếp xúc với quả cầu và phần quả cầu bên trong tứ diện có thể tích bằng phần quả cầu bên ngoài tứ diện nên tâm I của mặt cầu nằm trong tam giác ABC
tham khảo:
Mô hình hoá cái hầm bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 14,A'B' = 10\).
Gọi \(M,M'\) lần lượt là trung điểm của \(CD,C'D'\).
\(A'B'C'{\rm{D}}'\) là hình vuông \( \Rightarrow O'M' \bot C'{\rm{D}}'\)
\(CDD'C'\) là hình thang cân \( \Rightarrow MM' \bot C'D'\)
Vậy \(\widehat {MM'O'}\) là góc nhị diện giữa mặt bên và đáy nhỏ.
\( \Rightarrow \widehat {MM'O'} = {135^ \circ } \Rightarrow \widehat {M'MO} = {180^ \circ } - \widehat {MM'O'} = {45^ \circ }\)
Kẻ \(M'H \bot OM\left( {H \in OM} \right)\)
\(OMM'O'\) là hình chữ nhật
\( \Rightarrow OH = O'M' = 5,MH = OM - OH = 2,M'H = OO' = MH.\tan {45^ \circ } = 2\)
Diện tích đáy lớn là: \(S = A{B^2} = {14^2} = 196\left( {{m^2}} \right)\)
Diện tích đáy bé là: \(S' = A'B{'^2} = {10^2} = 100\left( {{m^2}} \right)\)
Số mét khối đất cần phải di chuyển ra khỏi hầm là:
\(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3}.2\left( {196 + \sqrt {196.100} + 100} \right) = \frac{{872}}{3} \approx 290,67\left( {{m^3}} \right)\)
Đáp án C
Gọi H là trung điểm của AB. Do ∆ SAB đều nên SH ⊥ AB và
Mà (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD).
Từ
Ta có
Lại có
* Phương án A:
* Phương án B:
* Phương án C:
* Phương án D:
Ta sử dụng phương pháp thử và sai, bắt đầu với n = 1 và tăng giá trị của n cho đến khi 1/6n(n+1)(n+2) vượt quá 100. Khi đó, n - 1 sẽ là số lớp tối đa của khối tứ diện.
Thử nghiệm:
- Với n = 1: 1/6 x 1 x 2 x 3 = 1, không vượt quá 100.
- Với n = 2: 1/6 x 2 x 3 x 4 = 4, không vượt quá 100.
- Với n = 3: 1/6 x 3 x 4 x 5 = 10, không vượt quá 100.
- Với n = 4: 1/6 x 4 x 5 x 6 = 20/3, vượt quá 100.
Vậy, số lớp tối đa của khối tứ diện được xếp từ 100 quả cam là n - 1 = 3.
Dùng AI hay sao 20/3 > 100 hay thế bạn =))