Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này không khó mà.
Vì 2 học sinh chạy xuất phát từ 1 điểm (đi cùng chiều) nên thời gian ngắn nhất để 2 em gặp nhau trên đường chạy là:
\(t=\frac{S}{v_1-v_2}=\frac{400}{4,8-4}=\frac{400}{0,8}=500\left(s\right)\)
Chúc bạn học tốt.
Giải:
Thời gian 2 bạn gặp nhau khi cả 2 chạy cùng chiều là:
\(t_1=\frac{s}{v_1-v_2}=\frac{400}{4,8-4}=500\left(s\right)\)
Thời gian 2 bạn gặp nhau khi cả 2 chạy ngược chiều là:
\(t_2=\frac{s}{v_1+v_2}=\frac{400}{4,8+4}=\frac{500}{11}\left(s\right)\)
Mặt khác: t2<t1 => thời gian ngắn nhất để 2 bạn gặp nhau trên đường chạy là sau \(\frac{500}{11}\left(s\right)\)kể từ lúc 2 bạn xuất phát từ 1 điểm
Quan sát hình vẽ ta thấy, cạnh ngắn nhất của tam giác \(ABC\) là cạnh \(AC\);cạnh ngắn nhất của tam giác \(DEF\) là cạnh \(DF\).
Do đó, ta có: \(\frac{{AC}}{{DF}} = \frac{{600}}{{300}} = 2\).
Do đó, tỉ số chu vi của tam giác \(ABC\) và tam giác \(DEF\) là 2.
Chu vi tam giác \(DEF\) là: \(300 + 350 + 550 = 1200m\)
Chu vi tam giác \(ABC\) là: \(1200.2 = 2400m\).
Quãng đường bạn Nam đã chạy là: \(1200.4 = 4800m\)
Quãng đường bạn Hùng đã chạy là: \(2400.2 = 4800m\).
Do đó, hai bạn Nam và Hùng đã chạy hai quãng đường bằng nhau.