K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

x=2cm=0,02m v=\(15\sqrt{5}\)cm/s= \(\dfrac{15\sqrt{5}}{100}\)m/s

k=\(m.\omega^2\) => \(\omega\)= 15,8113883

a= -\(\omega^2.x\)=-5 m/s

E=\(\dfrac{1}{2}mv^2_{max}=\dfrac{\left(ma\right)^2}{2k}+\dfrac{m.v^2}{2}=\)0,02125J

=> Đáp án B

20 tháng 7 2017

- Tự hỏi tự trả lời hở bạn?

2 tháng 9 2017

Đáp án A

Phương pháp:

- Áp dụng hệ thức độc lập với thời gian của li độ và vận tốc

- Áp dụng công thức tính năng lượng dao động của vật dao động điều hoà

Cách giải:

Tần số góc:  

Theo bài ra ta có: x = 4cm, v = 15π cm/s. Áp dụng công thức:  

Năng lượng dao động: 

28 tháng 7 2016

Tần số góc: \(\omega=\sqrt{\frac{K}{m}}=10\pi\left(rad\text{/}s\right)\)
Biên độ dao động của vật \(A=\sqrt{x^2+\left(\frac{v}{w}\right)^2}=6\left(cm\right)\)
Lò xo có độ nén cực đại tại biên âm:
\(\Rightarrow\)  Góc quét \(=\pi\text{/}3+\pi=\omega t\Rightarrow t=2\text{/}15\left(s\right)\)

chọn B

2 tháng 8 2016

Độ biến dạng của lò xo khi vật ở VTCB là: \(\Delta \ell_0=\dfrac{mg}{k}=\dfrac{1.10}{100}=0,1m=10cm\)

\(\omega=\sqrt{\dfrac{k}{m}}=10(rad/s)\)

Áp dụng CT: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2=2^2+\dfrac{(20\sqrt 3)^2}{10^2}\)

\(\Rightarrow A = 4cm\)

Lực đàn hồi cực đại: 

\(F_{dhmax}=k\Delta\ell_{max}=k(\Delta\ell_0+A)=100.(0,1+0,04)=14(N)\)

Lực đàn hồi cực tiểu:

\(F_{dhmin}=k\Delta\ell_{min}=k(\Delta\ell_0-A)=100.(0,1-0,04)=6(N)\)

1 tháng 6 2016
 

Độ giãn của lò xo tại VTCB: \(\Delta l_0=\frac{9}{\omega^2}=2cm\)

Lực đàn hồi có độ lớn 1,5 N
\(F=k.\left(\Delta l\pm x\right)\Leftrightarrow1,5=50.\left(0,02\pm x\right)\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1cm\\x=-1cm\end{array}\right.\)

Khoảng thời gian ngắn nhất vật đi qua hai vị trí mà lực đàn hồi F = 1,5 N là : 
\(t=\frac{T}{12}+\frac{T}{12}=\frac{\pi}{30\sqrt{5}}=s\)

Đáp án C

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

2 tháng 6 2016

Khi vật I qua VTCB thì nó có vận tốc là: \(v=\omega.A\)

Khi thả nhẹ vật II lên trên vật I thì động lượng được bảo toàn

\(\Rightarrow M.v = (M+m)v'\Rightarrow v'=\dfrac{3}{4}v\)

Mà \(v'=\omega'.A'\)

\(\dfrac{v'}{v}=\dfrac{\omega'}{\omega}.\dfrac{A'}{A}=\sqrt{\dfrac{M}{\dfrac{4}{3}M}}.\dfrac{A'}{A}=\dfrac{3}{4}\)

\(\Rightarrow \dfrac{A'}{A}=\dfrac{\sqrt 3}{2}\)

\(\Rightarrow A'=5\sqrt 3cm\)

Chọn A.

5 tháng 6 2016

Vận tốc của M khi qua VTCB: v = ωA = 10.5 = 50cm/s
Vận tốc của hai vật sau khi m dính vào M: v’ = Mv/(M+v)= 40cm/s
Cơ năng của hệ khi m dính vào M: W = 1/2KA'2= 1/2(m+M)v'2
A’ = 2căn5

11 tháng 1 2022

Gợi ý đi anh 

11 tháng 1 2022

nói lại em kém anh 7 năm nhé. Nên bọn em cần gợi ý mới làm được chứ. Với lại hình như anh học cái này thì phải bít chứ. Its ra cũng phải có gợi ý...!