Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+ \(\omega=\sqrt{\dfrac{g}{l}}=\sqrt{\dfrac{9,8}{0,2}}=7(rad/s)\)
t = 0 vật qua li độ 30 theo chiều dương \(\Rightarrow \varphi = -\dfrac{\pi}{6}\) rad
Vậy PT li độ góc: \(\alpha=6\cos(7t-\dfrac{\pi}{3})(^0)\)
+ Áp dụng: \(v=\sqrt{2gl(\cos\alpha-\cos\alpha_0)}\)
\(\Rightarrow v=\sqrt{2.9,8.0,2(\cos3^0-\cos6^0)}=...\)

Chọn đáp án D
Con lắc đơn dao động điều hòa nên ta có:
v ω A 2 − x 2 = g l α 0 2 l 2 − α 2 l 2 = g l α 0 2 − α 2 α = 0 ⇒ v = α 0 g l

Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)

\(\overrightarrow {g'} =\overrightarrow g - \overrightarrow a \)
Ô tô chuyển động nằm ngang => \(\overrightarrow a \bot \overrightarrow g\)
=> \(g' = \sqrt{g^2+ a^2}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)
\(T' = 2\pi \sqrt{\frac{l}{g'}}\)
=> \(\frac{T}{T'} = \sqrt{\frac{g'}{g}} = \sqrt{\frac{\sqrt{g^2+a^2}}{g}} = 1,01\)
=> \(T'= \frac{2}{1,01} = 1,98 s.\)
cho mình hỏi: Nếu trong trường hợp ôtô chuyển động thẳng chậm dần đều thì phải làm ntn ?
Chọn đáp án B.
Tốc độ của con lắc đơn dao động điều hòa là:
v = ω A 2 − x 2 = g l . α 0 l 2 − α l 2 = g l α 0 2 − α 2 → x = 0 ⇒ α = 0 ⇒ v = α 0 g l ( m / s ) .