Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(X \rightarrow _{-1}^{\ \ 0}e+Y\)
Từ phương trình phóng xạ => Cứ 1 hạt nhân \(X\) bị phóng xạ thì tạo thành 1 hạt nhân \(\beta^-\)
Số hạt nhân \(X\) bị phóng xạ là \(\Delta N = 4,2.10^{13}\) hạt. (1)
Số hạt nhân ban đầu \(X\) (trong 1 gam) là: \(N_0 = \frac{m_0}{A}.N_A= \frac{1}{58,933}.6,023.10^{23} \approx 1,022.10^{22}\)hạt. (2)
Từ (1) và (2) => \(\Delta N = N_0(1-2^{-\frac{t}{T}})\)
=> \(2 ^{-t/T}=1- \frac{\Delta N}{N_0} \)
=> \(\frac{-t}{T} = \ln_2(1- \frac{4,2.10^{13}}{1,022.10^{22}}) =- 5,93.10^{-9}\)
=> \(T \approx 1,68.10^{8}s.\) (\(t = 1s\))
Chọn đáp án.B.1,68.108s.
Số hạt còn lại: \(N=N_0.2^{-\dfrac{80}{20}}=\dfrac{N_0}{16}\)
Số hạt bị phân rã: \(N'=N_0-N=\dfrac{15}{16}N_0=93,75%\)
Đáp án A
Ta có:
• Khối lượng ban đầu của chất phóng xạ:
• Độ phóng xạ ban đầu:
Số hạt nhân Natri là \(N_0 = nN_Á = \frac{m}{A}N_A\)
Độ phóng xạ ban đầu \(H_0 = \lambda N_0 = \frac{\ln 2}{T}\frac{m}{A}N_A= 6,73.10^{16}.(Bq)\)
Chú ý là trong khi tính độ phóng xạ theo đơn vị "Bq" thì chu kì phải đổi sang đơn vị "giây" .
Tỉ số giữa độ phóng xạ sau 11,4 ngày và độ phóng xạ ban đầu
\(\frac{H}{H_0}= 2^{-\frac{t}{T}}=2^{-\frac{11,4}{3,8}}= 0,125. \)
=> Độ phóng xạ sau 11,4 ngày chiếm 12,5 % độ phóng xạ ban đầu
Tỉ số giữa độ phóng xạ của tượng gỗ (sau thời gian t) so với độ phóng xạ của gỗ lúc mới chặt
\(\frac{H}{H_0}= 0,8= 2^{-\frac{t}{T}}\)
=> \(t = 0,32 T = 1802,8.( năm)\)
Như vậy tượng gỗ có gần 1803 năm tuổi.
Chu kỳ bán rã : 7,654735734.10^-35(s)
Hằng số phóng xạ:
\(\lambda=\dfrac{ln2}{T}=\dfrac{ln2}{7,654735734.10^{-35}}=6h^{-1}\)
chọn a
Chu kì bán rã bn tính kiểu gì ra số nhỏ vậy ạ?