Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tốc độ của vật khi qua vị trí cân bằng v = vmax = ωA = 2 m/s
Đáp án B
Khi qua VTCB, vận tốc của vật đạt cực đại \(\Rightarrow v_{max} = \omega A = \frac{2\pi}{T} A = 2 (cm/s)\)
\(\omega\)=2\(\pi\)/T=2(rad/s)
Vận tốc qua vị trí cần bằng là vận tốc lớn nhất:
vmax=\(\omega\)A=4(cm/s)
+ Khi \(W_đ=3W_t\Rightarrow W=4W_t\Rightarrow x=\pm\frac{A}{2}\)
+ Khi \(W_đ=\frac{1}{3}W_t\Rightarrow W=\frac{4}{3}W_t\Rightarrow x=\pm\frac{\sqrt{3}}{2}A\)
Ta có véc tơ quay như sau:
Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.
\(t=\frac{30}{360}T=\frac{1}{12}.2=\frac{1}{6}s\)
\(S=\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right).10=\left(\sqrt{3}-1\right).5\)
Tốc độ trung bình: \(v=\frac{S}{t}=\left(\sqrt{3}-1\right).30=21,96\)(cm/s)
+ Khi qua VTCB, vận tốc cực đại, nên: vmax=20 cm/s.
+ Do: \(a = v'_{(t)} \Rightarrow (v_{max})^2 = v^2+(\frac{a}{\omega})^2 \Rightarrow (20)^2 = 10^2+(\frac{40\sqrt 3}{\omega})^2 \Rightarrow \omega = 4\ (rad/s)\)
+ Biên độ: \(A = \frac{v_{max}}{\omega}=\frac{20}{4} = 5 \ (cm)\)
Đáp án C
Vận tốc của vật tại VTCB:
v 0 = A ϖ = A . 2 π T = 1 . 2 . 3 , 14 3 , 14 = 2 m / s