Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)
+ A = 4cm.
+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)
Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)
Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)
t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi\) (rad/s)
+ Nhận xét: Trong 2s = 1T, vật đi quãng đường 4.A = 40 cm, \(\Rightarrow\) A=10cm.
+ t = 0, vật qua VTCB theo chiều dương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ \\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình: \(x = 10cos(\pi t -\frac{\pi}{2})\) (cm)
Vận tốc: \(v = x'_{(t)}= -60\pi \sin(10\pi t - \frac{\pi}{3}) = 60\pi \cos(10\pi t + \frac{\pi}{6})(cm/s)\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Nhận xét: Thay t =0 vào phương trình vận tốc: v = 4\(\pi\) = vmax
Do vận tốc đạt cực đại, nên vật qua VTCB, nên x = 0.
ta có PT chuẩn: x=Acos(wt+fi); v=-wAsin(wt+fi) => v=wAcos(wt+fi) cụ thể v=4picos(2pit+fi0) hay v=4picos2pit => A=2 mà fi=0 => x được chọn là x=2