Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc thực của cano là x(x>4)
Vận tốc xuôi dòng của cano là: x+4 (km/h)
Vận tốc ngược dòng của cano là:x-4(km/h)
Vì cano đi đến B rồi quay ngược lại thì gặp bè nứa cách A 8km tức là cano đi xuôi 24km và ngược 16 km nên ta có thời gian cano đi đến lúc gặp bè nứa là:\(\frac{24}{x+4}\)+\(\frac{16}{x-4}\)
Thời gian bè nứa trôi đến lúc gặp cano là: 8:4=2 h
Vậy ta có phương trình:
\(\frac{24}{x+4}\)+\(\frac{16}{x-4}\)=2
<=> 24(x-4)+16(x+4)=2(x+4)(x-4)
<=> 24x-96 +16x+64=2\(x^2\)-32
<=> 2\(x^2\)-40x=0
<=> x(2x-40)=0
x=0 hoặc 2x-40=0
x=0 (loại)hoặc x=20
vậy vận tốc thực của cano là 20km/h
Gọi vận tốc thực của ca nô là: x (km/h)
=> vận tốc cano xuôi dòng và ngược dòng là: x+4; x-4 (km/h)
Do ca nô gặp bè nứa tại điểm cách A là 8km nên nó ngược dòng từ B được 24-8=16 km thì gặp bè
Thời gian ca nô xuôi và ngược dòng là: 24x+4+16x−4(h)24x+4+16x−4(h)
+ Do bè nứa trôi 8km với vận tốc dòng nước nên nó trôi trong: 8/4=2 (h)
Ta có:
\(\dfrac{24}{x+4}\)+\(\dfrac{16}{x-4}\)= 2
=> \(\dfrac{12\left(x-4\right)+8\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}\)= 1
=> 12x - 48 + 8x + 32 = \(^{x^2}\)- 16
=>\(^{x^2}\)- 20x = 0
=> x = 20 ( km / h ) ( do : x > 0 )
vậy vận tốc là 20 ( km /h )
thời gian cano xuôi và ngược dòng là : \(\dfrac{24}{x+4}\)+ \(\dfrac{16}{x-4}\)
Vì be nứa trôi với vận tốc dòng nước là 4km/h =>Vbe=4k/h quãng đường đi đc của bé là 8 =>thời gian be đi là 2h
Gọi x là v thực của canô (x #0)thì vận tốc của canô lúc đi sẽ là x+4va v về sẽ là:x-4
T/g cano đi A đến B là 24 /(x+4)
T/g canô đi B đến A là 16/(x-4)
mà bé và canô cũg khởi hành và gặp nhau cùg 1 lúc :
Ta co p/t
24/(x+4)+16/(x-4)=2
Giai ra dc het p/t dc 2 nghiem la x=0
x=20
Vay van toc thuc cua cano la 20km/h
Vì bè nứa trôi vs vận tốc dòng nc là 4km/h -->
Vbè=4 km/h.
S đi đc của bè là 8
:=>Thời gian bè đi là:2h
Gọi X la V thực của ca nô (X#0) thì vận tốc của ca nô lúc đi là X + 4 ; vận tốc về là : X - 4
Thời gian can nô đi A->B là: 24 / (X+4)
Thời gian ca nô đi B-> A là: 16 / (X - 4)
Màbè và ca nô cùng khởi hành và gặp nhau 1 lúc
Ta có PT:
24 / (X+4) + 16 / (X - 4) = 2
Giải PT ta đc x =0 và x =20
Vậy vận tốc thực của ca nô là 20 km / h.
Gọi vận tốc thực của ca nô là: x (km/h) (a>0)
⇒ vận tốc thực của ca nô khi xuôi dòng là: x+4 (km/h)
vận tốc thực của ca nô khi ngược dòng là: x-4 (km/h) (a>4)
Khi gặp bè cách A 8km thì ca nô cách B 16km
Theo bài ra, ta có pt:
\(\dfrac{24}{x+4}+\dfrac{16}{x-4}=\dfrac{8}{4}=2\)
\(\Leftrightarrow24\left(x-4\right)+16\left(x+4\right)=2\left(x^2-16\right)\)
\(\Leftrightarrow24x-96+16x+64=2\left(x^2-16\right)\)
\(\Leftrightarrow20x-16=x^2-16\)
\(\Leftrightarrow x^2-20x=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\left(L\right)\\x=20\left(TM\right)\end{matrix}\right.\)
⇒ Vận tốc thực của ca nô là: \(20\) (km/h)
Gọi vận tốc thực của ca nô là: x (km/h) (a>0)
⇒ vận tốc thực của ca nô khi xuôi dòng là: x+4 (km/h)
vận tốc thực của ca nô khi ngược dòng là: x-4 (km/h) (a>4)
Khi gặp bè cách A 8km thì ca nô cách B 16km
Theo bài ra, ta có pt: 24 x + 4 + 16 x − 4 = 8 4 = 2 ⇔ 24 ( x − 4 ) + 16 ( x + 4 ) = 2 ( x 2 − 16 ) ⇔ 24 x − 96 + 16 x + 64 = 2 ( x 2 − 16 ) ⇔ 20 x − 16 = x 2 − 16 ⇔ x 2 − 20 x = 0 ⇔ { x = 0 ( L ) x = 20 ( T M )
Lời giải:
Gọi vận tốc ca nô là x(km/h), x>3. Vận tốc ca nô xuôi dòng là x+3 (km/h)
Thời gian ca nô xuôi dòng từ A đến B là 40x+3 (giờ)
Vận tốc ca nô ngược dòng là x−3 (km/h)
Quãng đường ca nô ngược dòng từ B đến địa điểm gặp bè là : 40−8=32 km
Thời gian ca nô ngược dòng từ B đến địa điểm gặp bè là: 32x−3 (giờ)
Ta có phương trình: 40x+3+32x−3=83⇔5x+3+4x−3=13 ⇔15(x−3)+12(x+3)=x2−9
⇔x2=27x⇔[x=27x=0
So sánh với điều kiện thì chỉ có nghiệm x=27 thỏa mãn, suy ra vận tốc của ca nô là 27km/h
gọi vận tốc dòng nước là x
theo bài ra ta có
thời gian lúc đi xuôi = \(\frac{48}{28+x}\)
thời gian lúc đi ngược \(=\frac{48}{28-x}\)
vì thời lúc về lâu hơn thời gian lúc đi 30'
=> \(\frac{48}{28+x}=\frac{48}{28-x}-\frac{1}{2}\)
giải ra là xong nha
_Kudo_