Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đổi $20'=\frac{1}{3}$ h
Gọi vận tốc riêng của cano là $a$ (km/h). ĐK $a>6$.
Vận tốc xuôi dòng: $a+6$ km/h
Vận tốc ngược dòng: $a-6$ km/h
Theo bài ra ta có:
$\frac{AB}{a-6}-\frac{AB}{a+6}=\frac{1}{3}$$\Leftrightarrow \frac{60}{a-6}-\frac{60}{a+6}=\frac{1}{3}$
$\Leftrightarrow a^2-36=2160$
$\Leftrightarrow a^2=2196$
$\Rightarrow a=6\sqrt{61}$ (km/h)
Gọi vận tốc cano khi nước yên lặng là x
Thời gian đi là 45/(x+3)
Thời gian về là 45/(x-3)
Theo đề, ta có: \(\dfrac{45}{x+3}+\dfrac{45}{x-3}=6,25\)
=>\(\dfrac{45x-135+45x+135}{x^2-9}=6,25\)
=>6,25x^2-56,25=90x
=>\(x=\dfrac{30+5\sqrt{42}}{4}\)
Tham khảo:
Gọi x (km/h) là vận tốc của ca nô khi xuôi dòng. Khi đó
Vận tốc của ca nô khi nước lặng yên là: x-6 (km/h)
Vận tốc của ca nô khi ngược dòng là: x-12 (km/h)
Ta thấy điều kiện của ẩn x>12 (vì vận tốc của ca nô khi ngược dòng phải lớn hơn 0)
Thời gian ca nô xuôi dòng từ A đến B là 36/x(giờ)
Thời gian ca nô ngược dòng từ B về A là 36/x-12 (giờ)
Tổng thời gian cả đi và về (từ 7 giờ sáng đến 11 giờ 30) là 4,5 giờ
Ta có phương trình:
36/x+36/x-12=9/2
<=> 4(x-12)+4x / x(x-12)= x(x-12) / 2x(x-12)
=> 8(x-12+x)=x(x-12)
<=>x(x-4)-24(x-4)=0
<=> (x-4)(x-24)=0
Phương trình này có 2 nghiệm là 4 và 24, nhưng chỉ có giá trị x=24 là thỏa mãn điều kiện của ẩn
Vậy vận tốc của ca nô khi xuôi dòng là 24km/h
Gọi vận tốc của cano là :x km/h
Vận tốc khi xuôi dòng của cano là : x+4 km/h
Vận tốc khi ngược dòng của cano là : x -4 km/h
thời gian cano đi xuôi dòng : 48 : (x+4) giờ
thời gian cano đi ngược dòng là : 48 :(x-4) giờ
có phương trình :
\(\frac{48}{x+4}+\frac{48}{x-4}=5\Leftrightarrow48\left(x+4\right)+48\left(x-4\right)=5\left(x^2-16\right)\)
\(\Leftrightarrow5x^2-96x-80=0\Leftrightarrow\orbr{\begin{cases}x=20\\x=-0,8\left(L\right)\end{cases}}\)
Vậy vận tốc cano Là : 20km/h
- gọi vận tốc của canô lúc nước yên lặng là x (km/h)
- vận tốc cano xuôi dòng là x+4 (km/h)
- vận tốc cano ngược dòng là x - 4 (km/h)
- thời gian canô xuôi dòng là 48/x+4 (h)
- thời gian cano ngược dòng là 48/x-4 (h)
theo đề bài ta có phương trình
48/x+4 + 48/x-4 = 5
<=> 48(x-4)/(x+4)(x-4) + 48(x+4)/(x+4)(x-4) = 5(x+4)(x-4)/(x+4)(x-4)
=> 48x - 192 + 48x + 192 = 5x2 - 80
<=> 48x - 192 + 48x + 192 - 5x2 + 80 =0
<=> -5x2 + 96x + 80 = 0
x1 = 20 ( nhận)
x2 = -4/5 (loại)
vậy vân tốc cano khi nước yên lặng là 20 km/h
Gọi vận tốc của cano khi nước đứng yên là : x km/h (x>4)
Vận tốc của cano khi đi xuôi dòng là: x+4(km/h)
Vận tốc của ca nô khi ngược dòng là x-4(km/h)
Thời gian đi xuôi dòng là 48/(x+4)h
Thời gian đi ngược dòng là 48/(x-4)h
THeo bài ra ta có p t
\(\frac{48}{x+4}+\frac{48}{x-4}=5\Leftrightarrow48\left(x-4\right)+48\left(x+4\right)=5\left(x^2-16\right)\)
\(\Leftrightarrow48x-48.4+48x+48.4=5x^2-80\Leftrightarrow5x^2-96x-80=0\)
Giải ra nghiệm của pt ( chắc là co hai nghiệm âm và dương loại âm ra vì Đk x>4)
*Gọi vận tốc riêng của thuyền là x (km/h) (1<x < 60)
Vận tốc khi xuồng xuôi dòng là: x + 1 (km/h)
Vận tốc khi xuồng ngược dòng là: x - 1(km/h)
*Thời gian xuồng xuôi dòng từ A --> B là: 60/(x + 1) (h)
Thời gian xuồng xuôi dòng đến bến C là: 25/(x - 1) (h)
30 phút = 1/2 (h)
*Vì thời gian kể từ lúc đi đến lúc quay trở lại đến bến C hết tất cả là 8 giờ nên ta có PT:
60/(x + 1) + 25/(x - 1) + 1/2 = 8
=> 60.2.(x - 1) + 25.2(x + 1) + (x - 1)(x + 1) = 8.2(x - 1)(x + 1)
<=> 120x - 120 + 50x + 50 + x^2 - 1 = 16x^2 - 16
<=> 15x^2 - 170x + 55 = 0
delta' = (- 85)^2 - 55.15 = 6400 = 80^2 > 0
=> PT có 2 nghiệm pb:
x1 = (85 - 80)/15 = 1/3 (loại)
x2 = (85 + 80)/15 = 11 (thỏa mãn điều kiện bài ra)
Vậy vận tốc xuồng máy khi nước yên lặng là 11km/h
Gọi vận tốc dòng nước là a km/h ( a > 0 )
vận tốc xuôi dòng là a + 25 km/h
vận tốc ngược dòng a - 25 km/h
Ta có tổng thời gian đi lẫn về là 5h nên
\(\dfrac{60}{a+25}+\dfrac{60}{a-25}=5\)
\(\Leftrightarrow60\left(a-25\right)+60\left(a+25\right)=5\left(a^2-25^2\right)\)
\(\Leftrightarrow120a=5a^2-5.25^2\Leftrightarrow\left[{}\begin{matrix}a=12+\sqrt{769}\\a=12-\sqrt{769}\left(l\right)\end{matrix}\right.\)
a = 25 thì pt vô nghiệm mà bạn?