K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

Giả sử tam giác ABC có M là trung điểm BC, AB thuộc \(d_1\), AC thuộc \(d_2\).

Gọi \(C=\left(m;2-m\right)\in\left(d_2\right)\Rightarrow B=\left(-2-m;m\right)\) 

Mà \(B\in\left(d_1\right)\Rightarrow2\left(-2-m\right)+6m+3=0\)

\(\Leftrightarrow m=\dfrac{1}{4}\)

\(\Rightarrow C=\left(\dfrac{1}{4};\dfrac{7}{4}\right)\)

Phương trình đường thẳng BC: \(\dfrac{x+1}{-1-\dfrac{1}{4}}=\dfrac{y-1}{1-\dfrac{7}{4}}\Leftrightarrow x-3y+4=0\)

7 tháng 4 2020

Lỗi nên bạn tự vẽ hình nha !!

Hình lỗi !!!

=>  Tọa độ A là : 

\(\hept{\begin{cases}x+y=2\\2x+6y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{4}\\y=\frac{-7}{4}\end{cases}}}\)

=> Tọa độ B là : 

\(\hept{\begin{cases}x+y=2\\x-y=0\end{cases}\Leftrightarrow x=y=1}\)

<=> Tọa độ C là 

C(-2 -1 ,1 - 1 ) 

=> C ( -3 ; 0 ) 

Vậy A ( \(\frac{15}{4};\frac{-7}{4}\))

       B ( 1 ; 1 )

      C( -3;0)

NV
12 tháng 4 2020

Mình làm 1 câu, bạn làm 3 câu còn lại hoàn toàn tương tự:

Do B thuộc AB nên tọa độ B có dạng: \(B\left(b;-2b+2\right)\)

Do C thuộc AC nên tọa độ C có dạng: \(C\left(c;\frac{-c+3}{3}\right)\)

Do M là trung điểm BC nên:

\(\left\{{}\begin{matrix}x_B+x_C=2x_M\\y_B+y_C=2y_M\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b+c=-2\\-2b+2+\frac{-c+3}{3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-2\\-2b-\frac{c}{3}=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1\\c=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(1;0\right)\\C\left(-3;2\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BC}=\left(-4;2\right)\)

\(\Rightarrow\) Đường thẳng BC nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình BC:

\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn