Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
+) Chọn 3 tiết mục bất kì có C 9 3 = 84 (cách).
+) Chọn 1 tiết mục của khối 10 có 3 cách. Chọn tiếp 1 tiết mục của khối 11 không trùng với nội dung đã chọn của khối 11 có 2 cách. Chọn tiếp 1 tiết mục của khối 12 không trùng với nội dung đã chọn của khối 10 và khối 11 có 1 cách. Do đó cá 6 cách chọn các tiết mục thoản mãn yêu cầu đề bài.
Vậy xác suất cần tính là 6 84 = 1 14
Đáp án A
Chọn 3 tiết mục bất kỳ có: Ω = C 9 3 = 84 cách.
Gọi A là biến cố: “ba tiết mục được chọn có đủ cả ba khối và đủ cả ba nội dung”.
Khối 10 chọn 1 tiết mục có 3 cách
khối 11 chọn 1 tiết mục khác khối 10 có 2 cách
tương tự khối 12 có 1 cách
Ta có: Ω A = 3 . 2 . 1 = 6 cách
Vậy P = 6 84 = 1 14
\(n\left(\Omega\right)=C^3_{20}\)
A: "3 người được chọn ko có cặp vợ chồng nào"
=>\(\overline{A}\): 3 người được chọn có 1 cặp vợ chồng
=>\(n\left(\overline{A}\right)=C^1_4\cdot C^1_{18}=72\left(cách\right)\)
=>n(A)=1068
=>P=1068/1140=89/95
Số cách chia 14 tiết mục thành 2 nhóm là: \(n(\Omega )= C_{14}^{7}.C_{7}^{7} \)
Gọi A là biến cố 2 tiết mục của lớp 12a1 được biểu diễn cùng một nhóm.
Số cách chọn 1 trong 2 nhóm để xếp 2 tiết mục của lớp 12a1 vào là: \( C_{2}^{1}\)
Số cách xếp 12 tiết mục còn lại là: \(C_{12}^{5}.C_{7}^{7}\)
Ta có \(n(A)= C_{2}^{1}.C_{12}^{5}.C_{7}^{7} \)
Xác suất xảy ra A là: \(P(A)= \frac{n(A)}{n(\Omega )} = \frac{C_{2}^{1}.C_{12}^{5}.C_{7}^{7}}{C_{14}^{7}.C_{7}^{7} } = \frac{6}{13} \)
a. Có \(C_2^1.C_3^1.C_4^1=24\) cách
b. Xếp 6 học sinh, có 6! cách
6 học sinh này tạo ra 5 khe trống sao cho các khe trống đều nằm giữa 2 học sinh. Xếp 3 thầy giáo vào 5 khe trống, có \(A_5^3\) cách
\(\Rightarrow6!.A_5^3\) cách
Xét 2 biến cố:
D: “Bạn Hương được chọn song ca” => P(D) = 0,9
E: “Bạn Dũng được chọn song ca” => P(E) = 0,7
a) Do \(A = D \cap E \Rightarrow P(A) = P(D).P(E) = 0,7.0,9 = 0,63\)
b) Ta thấy \(B = E \cup D \Rightarrow P(B) = P(E \cup D) = P(E) + P(D) - P(E \cap D) = 0,7 + 0,9 - 0,63 = 0,97\)
c) Xét biến cố đối \(\overline D \) của biến cố D. Ta thấy \(P\left( {\overline D } \right) = 1 - P(D) = 1 - 0,9 = 0,1\)
Vì \(C = E \cap \overline D \Rightarrow P(C) = P(E).P\left( {\overline D } \right) = 0,1.0,7 = 0,07\)
Số cách xếp 9 học sinh là 9!
Xếp 2 học sinh lớp 10 đứng cạnh nhau có 2!=2 cách
n(omega)=9!
TH1: 2 học sinh lớp 10 cạnh nhau
=>2*8!
TH2: 2 học sinh lớp 10 đứng xen kẽ với học sinh lớp 12
=>Có 2*4*7! cách
TH3: 2 học sinh lớp 12 đứng giữa hai học sinh lớp 10
=>Có \(2\cdot A^2_4\cdot6!\left(cách\right)\)
TH4: 3 học sinh lớp 12 đứng giữa hai học sinh lớp 10
=>Có \(2\cdot A^3_4\cdot5!\left(cách\right)\)
TH5: 4 học sinh lớp 12 đứng giữa hai học sinh lớp 10
=>Có \(2\cdot A^4_4\cdot4!\left(cách\right)\)
=>n(A)=145152
=>P(A)=2/5
a) \(n\left(\Omega\right)=C^3_{10}\)
Chọn 2 tiết mục hát : \(C^2_5\)
Chọn 1 tiết mục còn lại : 5
P = \(\frac{C^2_5\cdot5}{C^3_{10}}=\frac{5}{12}\)
b) P = \(\frac{5\cdot3\cdot2}{C^3_{10}}=\frac{1}{4}\)