Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử khi lấy ta lấy ra 9 viên bi đỏ, 9 viên bi vàng, 9 viên bi xanh nên tổng số viên bi là 9 + 9 + 9 = 28 (viên bi). Vậy cần lấy ít nhất 28 viên bi.
Cần lấy ít nhất 28 viên bi để chắc chắn có 10 viên bi cùng màu.
đúng 100 % luôn nha
th1: chọn 1 nhà toán học nam, 1 nhà toán học nữ, 1 nhà vật lý nam
có: 5.3.4 = 60 (cách chọn)
th2: chọn 2 nhà toán học nữ, 1 nhà vật lý nam
có: 3C2.4C1 = 12 (cách chọn)
th3: chọn 1 nhà toán học nữ, 2 nhà vật lý nam
có: 3C1.4C2 = 18 (cách chọn)
vậy có tổng cộng 60 + 12 + 18 = 90 cách chọn
a) chia 12 ghế thành 2 ô, nam ở một ô, nữ ở 1 ô. do vậy có 2 cách sắp xếp cho nam và nữ
sắp xếp các bạn nam ngồi vào ghế có chỉnh hợp chập 6 của 6 cách
tương tự, các bạn nữ cũng có chỉnh hợp chập 6 của 6 cách
như vậy có 2 nhân chỉnh hợp chập 6 của 6 nhân chỉnh hợp chập 6 của 6 bằng 1036800
chắc vậy. Bạn hỏi bọn 11 sẽ ổn hơn
Chọn 2 làm cơ số, ta có :
\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)
Mặt khác :
\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)
Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)
b) Ta có :
\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)
c) Ta có :
\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)
Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .
Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)
Suy ra \(\log_35=3a\) do đó :
\(\log_25=\log_23.\log35=3ac\)
Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)
Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)
Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)
d) Điều kiện : \(a>0;a\ne0;b>0\)
Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :
\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)
Từ đó ta tính được :
\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)